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a b s t r a c t

Background: The symptoms for Major Depression (MD) defined in the DSM-5 differ markedly from
symptoms assessed in common rating scales, and the empirical question about core depression symp-
toms is unresolved. Here we conceptualize depression as a complex dynamic system of interacting
symptoms to examine what symptoms are most central to driving depressive processes.
Methods: We constructed a network of 28 depression symptoms assessed via the Inventory of Depressive
Symptomatology (IDS-30) in 3,463 depressed outpatients from the Sequenced Treatment Alternatives to
Relieve Depression (STAR*D) study. We estimated the centrality of all IDS-30 symptoms, and compared
the centrality of DSM and non-DSM symptoms; centrality reflects the connectedness of each symptom
with all other symptoms.
Results: A network with 28 intertwined symptoms emerged, and symptoms differed substantially in
their centrality values. Both DSM symptoms (e.g., sad mood) and non-DSM symptoms (e.g., anxiety) were
among the most central symptoms, and DSM criteria were not more central than non-DSM symptoms.
Limitations: Many subjects enrolled in STAR*D reported comorbid medical and psychiatric conditions
which may have affected symptom presentation.
Conclusion: The network perspective neither supports the standard psychometric notion that depression
symptoms are equivalent indicators of MD, nor the common assumption that DSM symptoms of de-
pression are of higher clinical relevance than non-DSM depression symptoms. The findings suggest the
value of research focusing on especially central symptoms to increase the accuracy of predicting out-
comes such as the course of illness, probability of relapse, and treatment response.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Reliable diagnosis is an essential prerequisite for the study of
mental disorders. The question how to reliably measure Major
Depression (MD) is unresolved: depression biomarkers have very
limited explanatory power (Cai et al., 2015; Schmaal et al., 2015),
and MD was among the least reliable diagnoses in the DSM-5 field
trials (Regier et al., 2013).

When assessing depression, specific symptoms are used as in-
dicators for a presumed underlying disorder. While the DSM-5
(APA, 2013) relies on nine criterion symptoms for MD, common
rating scales comprise multiple items not part of the DSM criteria.
For instance, the Beck Depression Inventory (BDI) (Beck et al.,
f Psychology and Educational
and Individual Differences,
1996) includes irritability, pessimism, and feelings of being pun-
ished, the Hamilton Rating Scale for Depression (HRSD) (Hamilton,
1960) covers anxiety, genital symptoms, hypochondriasis, and in-
sights into the depressive illness, and the Center for Epidemiolo-
gical Studies Depression Scale (CESD) (Radloff, 1977) includes
frequent crying, talking less, and perceiving others as unfriendly.
This inconsistency implies a lack of consensus regarding the con-
struct and measurement of depression.

In this article, we attempt to provide a new theoretical and
empirical perspective on the question of ‘good’ depression symp-
toms. Symptoms are commonly understood as passive indicators
of some condition or disease, implying that depression symptoms
cluster because they stem from a common cause (Fried, 2015;
Schmittmann et al., 2013). This view has recently been challenged
by the network framework that conceptualizes depression and
other mental disorders as webs of causally connected symptoms:
insomnia can cause fatigue which in turn triggers concentration
and psychomotor problems (Borsboom and Cramer, 2013; Van de
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Table 1
IDS-C depression symptoms.

# IDS-C symptoms Short-
code

DSM-5
symptoms

Disaggregated
symptoms

Mean SD

1 Early insomnia In1 x x 1.62 1.26
2 Mid insomnia In2 x x 2.00 1.17
3 Late insomnia In3 x x 1.17 1.23
4 Hypersomnia Hyp x x 0.44 0.87
5 Sadness Sad x 2.01 0.74
6 Irritability Irr 1.33 0.86
7 Anxious/tense Anx 1.41 0.89
8 Mood reactivity Rea 1.37 1.05
9 Diurnal variation Var 0.92 1.17
10 Mood quality Qua 1.63 1.21
11 Appetite change App x x 1.28 1.11
12 Weight change Wei x x 1.14 1.21
13 Concentration/

decisions
Con x 1.96 0.94

14 Self-blame/
worthless

Bla x 1.88 1.17

15 Pessimism Pes 1.35 0.96
16 Suicidal ideation Sui x 0.64 0.74
17 Interest loss Int x x 1.74 1.01
18 Energy loss Ene x 1.79 0.94
19 Pleasure loss Ple x x 1.43 1.15
20 Loss of sexual

interest
Sex 1.57 1.30

21 Psychomotor
retardation

Ret x x 0.70 0.59

22 Psychomotor Agi x x 0.87 0.79
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Leemput et al., 2014). Such problems can be organized in feedback
loops and create so-called attractor states—highly stable networks
—that are hard to escape.

Instead of asking whether a symptom indicates the underlying
disorder well, we aim to understand how closely interconnected a
symptom is with all other symptoms in the psychopathological
network. This metric, known as centrality (Opsahl et al., 2010),
indicates the overall connectivity of a symptom, and has gained
substantial attention in the clinical literature (Bringmann et al.,
2015; Robinaugh et al., 2014; Wigman et al., 2015). Centrality is
easy to understand from the perspective of social networks: if a
celebrity or major newspaper shares news on Twitter, the in-
formation will likely spread quickly and widely through the social
network; a peripheral person with very few connections is much
less likely to impact on the network. For depression, the activation
of a highly central symptom means that impulses will spread
through the network and activate a large number of other symp-
toms, whereas a peripheral symptom is less relevant from a dy-
namic systems perspective because it has few means to influence
the network.

The main goals of this article are (A) to explore the centrality of
a large number of depressive symptoms, and (B) to compare the
centrality of the DSM criteria with the centrality of non-DSM
symptoms such as anxiety and irritability that are highly prevalent
in depressed samples and associated with worse clinical trajec-
tories (Fava et al., 2008; Judd et al., 2013).
agitation
23 Somatic

complaints
Som 1.34 1.01

24 Sympathetic
arousal

Sym 0.94 0.81

25 Panic / phobia Pan 0.65 0.95
26 Gastrointestinal

problems
Gas 0.65 0.88

27 Interpersonal
sensitivity

Inp 1.29 1.22

28 Paralysis Par 0.84 1.09
2. Method

2.1. STAR*D protocol

We reanalyzed the version 3.0 dataset from the NIH-supported
Sequenced Treatment Alternatives to Relieve Depression (STAR*D)
study (Fava et al., 2003; Rush et al., 2004). STAR*D was a multisite
randomized clinical trial conducted in the USA. In the first treat-
ment stage, 4,041 patients were enrolled, and all participants re-
ceived the selective serotonin reuptake inhibitor citalopram. Data
were collected via telephone interviews; interviewers had re-
ceived sufficient training and were masked to treatment. STAR*D
was monitored and approved by the institutional review boards of
all participating institutions, and after complete description of the
study to the subjects, written informed consent was obtained after
the study had been fully explained.

2.2. Participants

STAR*D participants had to be between 18 and 75 years, fulfill
DSM-IV criteria for single or recurrent nonpsychotic MD, and ex-
hibit a score of at least 14 points on the HRSD. Exclusion criteria
were a history of bipolar disorder, schizophrenia, schizoaffective
disorder, or psychosis, or current anorexia, bulimia, or primary
obsessive compulsive disorder. Further exclusion criteria and de-
tails about the study design are described elsewhere (Fava et al.,
2003; Rush et al., 2004).

From the 4,041 participants originally enrolled into STAR*D,
3,867 (95.69%) patients provided data during the first measure-
ment point of the first treatment stage. Of these, 10.45% had to be
removed due to missing values on the IDS-C or demographic
variables, leaving 3,463 depressed patients in the final sample.

2.3. Outcome measures

We analyzed the clinician-rated version of the IDS-C (Rush
et al., 1996) assessed at the first measurement point in the first
treatment stage of STAR*D. The IDS-C encompasses 30 depression
symptoms, both DSM and non-DSM symptoms; it also covers most
DSM-5 criterion symptoms in disaggregated form. Disaggregated
information was not available for the two symptom domains
weight problems (increase vs. decrease) and appetite problems
(increase vs. decrease). In line with the manual of the scale, we
constructed the aggregated domains ‘weight problems’ and ‘ap-
petite problems’. This led to a total of 28 individual symptoms
(Table 1): 15 symptoms that are part of the DSM criteria for MD,
and 13 non-DSM symptoms.

2.4. Statistical analysis

Overall, we performed three groups of analyses. In a first step,
we used the R-package qgraph (Epskamp et al., 2012) to estimate
the network structure of the 15 DSM symptoms, and the network
structure of all 28 IDS-C symptoms (both networks are undirected
due to the cross-sectional nature of the data). Such networks
contain nodes (symptoms) and edges (associations among symp-
toms). We employed the glasso (or graphical lasso) procedure that
estimates a network in which the edges are partial correlation
coefficients. This means each edge represents the relationship
between two variables, controlling for all other relationships in the
network. We control for false positive edges using the least ab-
solute shrinkage and selection operator (lasso) (Tibshirani, 1996).
As a result, very small edges (likely due to noise) are set exactly to
zero. The shrinkage parameter is chosen to minimize the extended
Bayesian Information Criterion (Chen and Chen, 2008), and can
accurately recover underlying network structures (Van Borkulo
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et al., 2014). The graphical representation of networks is based on
the Fruchterman–Reingold algorithm that places nodes with
stronger and/or more connections closer together. Since IDS-C
symptoms are ordered-categorical, analyses were based on poly-
choric correlations. We tested the robustness of the 28-symptom
network and of the graph theoretical measures derived from the
network using a bootstrap sampling procedure that is described in
detail in the supplementary materials.

Second, we estimated the centrality of all symptoms, which
represents the connectedness of a given symptom with all other
symptoms in the network. Our main focus in this report lies on
node strength centrality, a common and stable centrality metric
defined as the sum of all associations a given symptom exhibits
with all other nodes (Opsahl et al., 2010). We estimated confidence
intervals (CI) of the node strength for each symptom by drawing
2,000 bootstrap samples of the data and recalculating the node
strength for each resampling of the participants; to do so, we used
the R-package bootnet (Epskamp, 2015) developed for this report.
Apart from node strength, other centrality metrics such as be-
tweenness centrality (based on the concept of shortest path length
connecting any two symptoms; a symptom with a high be-
tweenness lies along the shortest path connecting many other
symptoms) and closeness centrality (a measure of how close a
symptom is to all other symptoms) are available (Opsahl et al.,
2010). Since closeness and betweenness centrality were sub-
stantially correlated with node strength centrality in the networks
presented here, we focus on node strength in the main report and
present betweenness and closeness results in the supplementary
materials.

Third, we performed a number of tests to compare the cen-
trality values or edges across different symptom groups (e.g., DSM
vs. non-DSM symptoms). Since network metrics are related in
complex ways and do not satisfy the assumptions of t-tests, we
employed permutation tests that compare the observed variable of
interest—e.g., centrality differences across two groups—to a dis-
tribution of possible differences between groups. We created the
distribution by assigning symptoms randomly to the two groups
100,000 times, and estimated the difference between groups each
time. If the observed difference between two groups was within
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Fig. 1. A: Network containing 15 IDS-C DSM criterion symptoms of Major Depression. Gr
and brightness of an edge indicate the association strength. The layout is based on the
connections closer together and the most central nodes into the center. See Table 1 for
criterion symptoms of Major Depression, including 95% confidence intervals.
the 2.5% on either side of the distribution, we considered the test
significant at the 5% level.
3. Results

3.1. Demographic characteristics

The 3,463 participants included in the final sample were on
average 41 years old (SD¼13), and about 63% of the sample was
female. The mean IDS-C score was 36 (SD¼12; range 1–74), in-
dicating moderately severe depression. Table 1 provides an over-
view of all symptoms along with their descriptive statistics.

3.2. Network analysis of 15 DSM symptoms

In a first step, we constructed a psychopathological network
consisting of the 15 IDS-C symptoms featured in the DSM diag-
nostic criteria for MD (Fig. 1, left); 71 of all possible 105 edges
(68%) were estimated to be above zero. The network revealed
strong associations among the sleep symptoms (hyp, in1, in2, in3),
a strong connection between weight (wei) and appetite problems
(app), and a close bond between loss of interest (int) and loss of
pleasure (ple) which represent the two disaggregated items of the
DSM core criterion symptom ‘diminished interest or pleasure’.
Interestingly, psychomotor agitation (agi) and retardation (ret)
were weakly positively connected. Overall, symptoms seemed or-
ganized in roughly three clusters (sleep, wei/app, rest), with agi
being largely isolated.

When inspecting the node strength of the DSM symptoms
(Fig. 1, right), we found a smooth decline and no abrupt changes in
symptom importance. Since psychomotor agitation (agi) is nearly
unconnected in the network, it is not surprising to find it has the
lowest node strength. Loss of energy (ene), on the other hand, is
situated in the center of the network, and thus also exhibits the
largest symptom importance in the network. A visualization of the
betweenness and closeness centralities for the 15 DSM symptoms
can be found in supplementary Fig. S1.
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symptom short-codes. B: node strength centrality estimates of the 15 IDS-C DSM
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Fig. 2. A: Network containing 28 IDS-C depression symptoms. Green lines (dotted lines in print version) represent positive associations, red lines (solid lines in pint version)
negative ones, and the thickness and brightness of an edge indicate the association strength. The layout is based on the Fruchterman–Reingold algorithm that places the
nodes with stronger and/or more connections closer together and the most central nodes into the center. See Table 1 for symptom short-codes. B: node strength centrality
estimates of the 28 IDS-C depression symptoms, including 95% confidence intervals.
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3.3. Global network analysis of 28 symptoms

In a second step, we included all 28 IDS-C symptoms in the
network (Fig. 2, left). The resulting network featured no un-
connected nodes, and 185 of all possible 378 edges (49%) were
estimated to be above zero. The four sleep symptoms (hyp, in1, in2,
in3) were closely connected, and only exhibited weak associations
with other symptoms. Similar to the DSM-network in Fig. 1, ap-
petite problems (app) and weight problems (wei) were closely
associated, the disaggregated items of the DSM core symptom
‘diminished interest or pleasure’ (int, ple) formed a strong bond,
and psychomotor agitation (agi) and retardation (ret) exhibited no
strong negative relationship. In addition, panic/phobia (pan) and
anxious/tense (anx) were highly related, as were interpersonal
sensitivity (inp) and self-blame (bla). The two items diurnal var-
iation (var; no relationship between mood and time of day in-
dicating no depression, a specific relationship indicating depres-
sion) and mood quality (qua; identical to grief indicating no de-
pression, distinct from grief indicating depression) showed few
connections.

Inspecting the node strength (Fig. 2, right) revealed that both
DSM and non-DSM symptoms were among the ten most central
nodes. The DSM core symptoms diminished interest / pleasure (int,
ple) as well as sad mood (sad) were highly central, and the two
anxiety symptoms (anx, pan) were also of considerable importance
in the network. Diurnal variation (var) and mood quality (qua) can
be considered centrality outliers. A visualization of the between-
ness and closeness centralities for the 28 symptoms can be found
in supplementary Fig. S2.

Overall, it is obvious from Fig. 2 that there are no fundamental
differences between DSM and non-DSM symptoms from a net-
work perspective. The picture emerging from both figures is that
the two sets of symptoms are strongly intertwined. The bootstrap
sampling procedure revealed that node strength estimates were
very robust, and neither the particular symptoms included in the
IDS-C, nor the specific number of nodes in the network, biased the
node strength estimates (see supplementary materials).

3.4. Comparison of DSM and non-DSM symptoms

In a last analytic step, we used a permutation test to statisti-
cally compare the centrality estimates of DSM and non-DSM
symptoms. Groups did not differ regarding betweenness centrality
(p¼0.12) and closeness centrality (p¼0.64). For node strength,
DSM criteria were significantly more central than the non-DSM
symptoms (p¼0.03), although the evidence was not very strong
and would not survive controlling for multiple testing via Bon-
ferroni correction (p¼0.08).

We evaluated the robustness of these findings in several ways.
First, DSM and non-DSM symptoms did not differ regarding their
means (W¼121, p¼0.30) or standard deviations (W¼89, p¼0.72)
using Mann–Whitney U tests. This implies that symptoms within
the two groups were not differentially severe or variable, ruling
out concerns that centrality results were biased by, for instance,
DSM symptoms being more severe, or non-DSM having a higher
variability. Second, a permutation test revealed that the 10 dis-
aggregated symptoms were not more central than the other 18
symptoms (node strength: p¼0.86; betweenness and closeness:
p¼1); this is relevant because all disaggregated symptoms were
exclusively DSM symptoms, which could have potentially con-
founded the analysis. Finally, both symptoms identified as cen-
trality outliers, mood variability (var) and mood quality (qua), are
non-DSM symptoms, potentially biasing the comparison of
symptom groups. When we repeated the comparison excluding
var and qua, the previous suggestive evidence of a centrality dif-
ference between DSM and non-DSM symptoms disappeared for
node strength centrality (permutation test; p¼0.13) and remained
non-significant for betweenness (p¼0.28) and closeness (p¼1).
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4. Discussion

To our knowledge, we provide the first network analysis of 15
disaggregated DSM criterion symptoms of depression, along with
the first analysis of a large number of both DSM and non-DSM
depressive symptoms. Symptoms differed markedly in their cen-
trality estimates, and DSM criteria were not more central than
non-DSM symptoms. This implies that the symptoms featured in
the DSM-5 are no more appropriate as indicators of depression
than non-DSM symptoms, and that particular symptoms (both
DSM and non-DSM symptoms) may hold special clinical
significance.

4.1. Detailed discussion of the results

The variability of node strength estimates in the 28-symptom
network analysis was considerable: while some DSM symptoms
such as hypersomnia and psychomotor agitation were among the
least central symptoms (ranked 23 and 25), the three IDS-C items
representing the DSM core criteria for MD were among the top
5 central symptoms in the network (ranked 1, 4, and 5 out of 28).
The DSM-5 assigns a diagnosis of MD if a patient exhibits five or
more symptoms, at least one of which has to be one of the two
core symptoms depressed mood and diminished interest or plea-
sure (APA, 2013). The results underline the potential clinical im-
portance of these core criteria, and support a prior study doc-
umenting that DSM core symptoms were among the depression
symptoms with the highest impact on impairment of psychosocial
functioning (ranked 1 and 4 out of 14 symptoms) (Fried and Nesse,
2014). Sad mood and anhedonia have also been shown to out-
perform other depression symptoms, and in some cases even the
sum of all depression symptoms, in predicting depression diag-
nosis (Rosenström et al., 2015).

The most central non-DSM symptom in our report was sym-
pathetic arousal (palpitations, tremors, blurred vision, sweating),
featuring strong connections with somatic complaints (limb hea-
viness, pain, headaches), gastrointestinal problems, and panic/
phobia. While it is well-established that somatic symptoms are
prevalent in depressed individuals (Fried and Nesse, 2015a; Zim-
merman et al., 2006), we are unaware of research specifically ex-
amining the role of somatic depression symptoms in psycho-
pathological networks.

Apart from sympathetic arousal, two anxiety symptoms, panic/
phobia and anxious/tense, exhibited high node strength values
(ranks 7 and 10). A host of studies have documented the important
role of anxiety in depressed patients, which predicts reduced
treatment efficacy (Fava et al., 2008; Gollan et al., 2012) as well as
chronicity of MD, hospitalization, and disability (Van Loo et al.,
2014). High comorbidity rates between mood and anxiety dis-
orders (Kessler et al., 2005) are well established and traditionally
understood as a patients having two distinct diseases. An alter-
native hypothesis supported by network studies is that depression
and anxiety symptoms do not form distinct symptom clusters—
they substantially overlap and are organized within a larger psy-
chopathological network (Cramer et al., 2010; Fried, 2015; Goe-
koop and Goekoop, 2014). This means that once a few specific
symptoms are activated, this activation can spread from anxiety to
depression symptoms (and vice versa) via highly central
symptoms.

Diurnal variation and mood quality were largely isolated,
meaning that they are unlikely to worsen other MD symptoms
once activated. In contrast to most other MD symptoms, they do
not range from absent to present: the item diurnal variation lies
between “no regular relationship between mood and time of day”
and “mood clearly better / worse at a fixed time”, while quality of
mood is assessed on a scale ranging from “mood undisturbed or
identical to bereavement” to “mood qualitatively distinct from
grief”. It may thus not be surprising that these symptoms are only
very weakly associated with other symptoms.

4.2. Conclusions and implications

The network perspective does not support the integrity of the
DSM criteria, and we see three implications. First, it is of note that
the reasons why particular symptoms are featured in the DSM
seem to be based more on history than evidence. In 1957, Cassidy
et al. (Cassidy et al., 1957) put together a list of symptoms for
manic-depressive disorders which was based on the cardinal
symptoms proposed by Kraepelin. In Cassidy's report, a diagnosis
required the presence of low mood along with six out of ten sec-
ondary symptoms (thinking slowly, agitation, insomnia, fatigue,
poor appetite, weight loss, constipation, problems concentrating,
suicidal thoughts, decreased libido). This list was adapted in 1972
by Feighner et al. (Feighner et al., 1972): constipation was re-
moved, and hypersomnia, guilt, worthlessness, anhedonia, and
indecisiveness were added. The criteria have remained largely
unchanged in the last 4 decades, and predominant depression
scales are just about as old. In a recently published list of the
hundred most-cited papers in science (Van Noorden et al., 2014),
ranks 51, 53, and 54 were rating scales for depression—the HRSD
(1960), the BDI (1961), and the CES-D (1977). What we know about
depression today is, to a large degree, based on studies using these
instruments, with many results likely idiosyncratic to the parti-
cular scales used in particular studies (Santor et al., 2009; Snaith,
1993). The assessment of a large number of symptoms in future
studies—across different diagnoses to provide insights on the
mechanisms underlying comorbidities—could generate data that
may move the field forward substantially (Fried and Nesse, 2015b).

Second, our results are consistent with a previous study ex-
amining the impact of 14 partially disaggregated DSM depression
symptoms on impairment of psychosocial functioning (Fried and
Nesse, 2014), in which the two DSM core symptoms, along with
energy loss and concentration problems, were the four most im-
pairing symptoms. These symptoms were also the four most
central DSM symptoms in the global network analysis presented
here, and among the most central symptoms in the DSM network.
This finding supports the notion of centrality as measure of clinical
significance: highly central symptoms are likely to activate other
symptoms in a network, which may lead to increased levels of
overall impairment caused by these specific problems. Future re-
search on centrality may allow prevention and intervention stra-
tegies to target specific symptoms before these impact on the rest
of the network and lead to a full-fledged depression. It is of note
that the DSM core criteria of MD do not receive any special at-
tention in common depression rating scales (such as the HRDS,
BDI, or CES-D). This also holds for standard psychometric models
in which symptoms are used as equivalent indicators of MD
(Schmittmann et al., 2013), and we are not aware of any model
that allows for a differentiation between two hierarchical levels of
symptoms. While the distinction between core and secondary
symptoms may be somewhat arbitrary—concentration problems,
for instance, were highly central and also among the most im-
pairing depression symptoms (ranked 2 out of 14) (Fried and
Nesse, 2014)—we believe that a focus on severe and central
symptoms, especially in the context of dynamic network models,
may reveal important insights in future studies.

The third implication is for the common notion of symptom
equivalence implicit in research studies and statistical models of
depression—the idea that symptoms are interchangeable in-
dicators of the same underlying disorder (Fried, 2015; Schmitt-
mann et al., 2013). Our findings of differential symptom centrality
support the growing chorus of voices suggesting that depression
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symptoms differ in important aspects such as biomarkers and risk
factors, and that we should pay special attention to particular
symptoms (for a review, see Fried and Nesse, 2015b). This also
implies that commonly used sum-scores obfuscate reciprocal in-
teractions among symptoms (Faravelli, 2004; Fried, 2015), and we
believe that important insights can be gained from analyzing in-
dividual symptoms. A focus on disaggregated symptoms is of
particular importance: psychomotor retardation and agitation, for
instance, connect to very different symptoms in the network
analysis presented above, and may play substantially different
roles in depression.

Finally, it is important to point out that the present work
should not be misunderstood as critique of the DSM that already
has taken a heavy beating in the last years (e.g., Insel, 2013). Our
goal is to encourage researchers and clinicians to start thinking
about the importance of individual symptoms and their associa-
tions, and move beyond the specific symptoms listed in the DSM
(Fried, 2015). At this point, it is too early to suggest potential re-
visions for future iterations of diagnostic systems, and the ques-
tion how network approaches can inform nosology is beyond the
scope of this paper. Nonetheless, if the basic principle of dynamic
systems theory applies to mental disorders, if symptoms trigger
subsequent symptoms in causal processes of mutual influences,
and if these influences happen not only within, but also across
diagnoses, the current routine approach to add a small number of
symptoms—many of which are not specific to MD—to a sum-score
to reflect depression severity may require fundamental revisions.

4.3. Limitations

This study has to be interpreted in the light of a number of
limitations. First, STAR*D is a highly representative sample of in-
dividuals diagnosed with MD because it allows for certain co-
morbidities . The sample thus reflects clinical reality and increases
the generalizability of results, seeing that more than half of all
depressed patients suffer from at least one comorbid diagnosis
(Kessler et al., 2005). At the same time, our findings may not
generalize to other depression trials because most exclude parti-
cipants with comorbid conditions.

Second, some IDS symptoms, for instance the three insomnia
items, are substantially inter-correlated, which may have in-
creased their centrality estimates. The question arises whether
such items should be combined into one node instead of keeping
them separately. In other fields of network science such as gene
co-expression, this problem has been addressed from the per-
spective of topological overlap (Oldham et al., 2008; Zhang and
Horvath, 2005). If nodes such as insomnia items are distinct
phenomena that are correlated, they likely exhibit differential
patterns of relations to other nodes and should be retained in the
network. If, on the other hand, such nodes are just differently
worded items that measure the same construct, they will show
similar relations to other items, and should be combined because
they complicate the network with redundant information. In the
absence of definitive work on topological overlap for psychological
variables (cf. Costantini, 2014), we decided to retain all nodes in-
stead of arbitrarily combining some, but not others (appetite and
weight problems were also substantially related, as were panic/
phobia and anxious/tense). Instead, we performed a number of
robustness analyses to ensure the stability of the results.

Third, due to the cross-sectional nature of the data, the esti-
mated networks are undirected, and centrality estimates do not
provide information whether a symptom mostly actively triggers
other symptoms (outdegree centrality), or whether a symptom
mostly is triggered by other nodes (indegree centrality). Long-
itudinal studies allow for differentiating between these two types
of centrality (e.g., Bringmann et al., 2014), and future work
focusing on outdegree centrality specifically as an indicator for
clinical relevance promises important insights.

Finally, participants enrolled into the STAR*D study had to
fulfill DSM-IV criteria for single or recurrent nonpsychotic MD and
exhibit a score of at least 14 points on the HRSD. This means that
patients were selected, among other criteria, based on the pre-
sence of DSM symptoms, which may have led to an increased
severity and variability of these symptoms compared to non-DSM
symptoms. This, in turn, may have biased centrality estimates due
to restriction of range: symptoms with a smaller mean and de-
creased variability are unlikely to exhibit pronounced associations
with other symptoms. However, the two symptom groups did not
differ significantly in their means or standard deviations, making
such a bias very unlikely.

4.4. Conclusion

Measures of symptoms centrality derived from network ana-
lysis provide new insights regarding the clinical significance of
specific depression symptoms. These insights have major clinical
implications and suggest new approaches that may better predict
outcomes such as the course of illness, probability of relapse, and
treatment response.
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