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In many scientific areas, researchers collect multivariate time profile data on the evolution of a set of variables
across time for multiple persons. For instance, clinical studies often focus on the effects of an intervention on dif-
ferent symptoms for multiple persons, by repeatedly measuring symptom severity for each symptom and each
person. To pursue an insightful overview on how these time profiles vary as a function of both symptoms
and persons, we propose two-mode K-Spectral Centroid (2M-KSC) analysis, which is a multivariate extension
of K-Spectral Centroid analysis. Specifically, 2M-KSC assigns the persons to a few person clusters and the symp-
toms to a few symptom clusters and imposes that the time profiles that correspond to a specific combination of a
person cluster and a symptom cluster have the same shape, but may vary in amplitude scaling. An algorithm for
fitting 2M-KSC is proposed and evaluated in a simulation study. Finally, the newmethod is applied to time pro-
files regarding the severity of depression symptoms during a citalopram treatment.
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1. Introduction

In many research areas interest in understanding howmultiple var-
iables change over time increases. Good examples, onwhichwe focus in
this paper, are intervention studies, targeting specific medical or psy-
chological problems (e.g., [1,2]). In such studies, one often measures
the evolution of multiple symptoms for multiple persons at consecutive
time points, where a score of zero reflects the absence of a symptom.
For instance, the NIH-supported STAR*D study (data version 3.0) [3,4],
which we will revisit in this paper, mapped the severity of fourteen de-
pressive symptoms for clients with major depressive disorder (MDD),
and receiving a citalopram treatment, across several weeks.

The evaluation of such time profiles allows the researcher to address
several important questions, including: How fast does the effect of the
intervention kick in for different symptoms? Do relapses occur for
some symptoms? When is full effect of the treatment reached? Are
these effects across time the same for the different symptoms or can a
few symptom groups be discerned each reacting differently? Similarly,
what about individual differences: Is there evidence that the shape of
the time profiles depends on the persons involved, and, if so, which
types of persons react similarly? Obviously, these questions are
try And Psychology conference,
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important, since they allow predicting how a specific individual with a
particular symptomprofile would react to the intervention under study.

To further clarify these research questions and the associated
modeling challenges, it is instructive to briefly review the different
modeling approaches for analyzing time profiles. To this end, it is useful
to distinguish between three modeling levels (for similar distinctions, see
[5,6]): the phenotype level, the constituent level, and the generating level.
Approaches at the phenotype level model examine which time profiles
have the same manifest appearance, for instance, by clustering them into
a few types. Approaches at this level differ in which profile characteristics
are taken into account or sidelined when deciding whether profiles have
the same shape or not. Specifically, one may take timing differences
(i.e., phase variability, [7,8]) between the time profiles into account, by
deciding that profiles that are time shifted (complete profile is shifted by
a few time points) or warped (compressing some parts of the profile
while stretching out others) versions of another differ in shape. If such
differences are sidelined, however, they are removed before conducting
the shape comparison. This implies that within each type, room is left for
heterogeneity with respect to differences in these profile characteristics.
The same holds for intensity differences (i.e., amplitude variability)
between the time profiles, such as intensity shifting (complete profile is
shifted in intensity by adding a scalar) or amplitude scaling (complete
profile is deflated or inflated by multiplying it with a scalar).

At the constituent level approaches focus on the underlying constitu-
ents or components of the time profiles. For example, growth curve and
trajectory models (e.g., [9,10,11]) can be situated at this level, as they
model time profiles as a weighted sum of linear, quadratic, etc. basis
functions and thus summarize the profiles in terms of intercepts and
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slopes. Another example of a constituent level method is the method of
Heard, Holmes, Stephens, Hand and Dimopoulos [12], as it models
time profiles as weighted combinations of prespecified nonlinear basis
functions and clusters profiles based on these weights.

At the generating level, one is interested in the mechanism that
generates the time profiles and aims to discover the underlying laws.
For instance, approaches using differential equations, that relate ob-
served scores on a variable (e.g., symptom severity) to its rate of change
(e.g. [13]), or Markov approaches, where the present state of a variable
(e.g., symptom severity) is dependent on the immediately preceding
state only (e.g. [14]), fall within this level.

If we return to our research questions – does the shape of the time
profiles vary as a function of the persons and symptoms under study,
and can person types and symptom groups be induced that have similar
time profiles –, it is clear that the resulting modeling challenges pertain
to the manifest appearance of the profiles and thus are located at the
phenotype level. Moreover, in the case of symptom profiles, timing dif-
ferences should be taken into account when categorizing the profiles
as similar or not, since they can be meaningfully interpreted as delayed
or accelerated reactivity to the intervention. In addition, vertical profile
or severity shifts should be taken into account as well, not in the least
because zero severity values have a clear meaning (viz., symptom
absence), which disappears after an upward profile shift. Differences
in amplitude scaling can be sidelined, however, because they might
be due to differences in the overall severity of the symptoms or their
wording (e.g., suicidal thoughts vs. waking up too early) or to inter-
individual differences in response style; note that such scaling differ-
ences do not affect zero scores.

Among the existing approaches at the phenotype level, the method
that most closely meets our modeling needs is K-Spectral Centroid
(KSC) analysis ([15]; for an application in emotion psychology, see
[16]). KSC clusters time profiles based on their shape, while allowing
for amplitude scaling differences among the profiles that belong to the
same cluster. However, KSC is a univariatemethod, in that it models dif-
ferences in the time profiles of one symptom, or one variable in general.
Therefore, the aim of this paper is to develop amultivariate extension of
KSC, called two-mode KSC (2M-KSC), that allows modeling how time
profiles vary as a function of both the persons and the symptoms
under study. Specifically, 2M-KSC assigns the persons to a few persons
Fig. 1. Hypothetical time profiles of four depression sympt
clusters and the symptoms to a few symptom clusters and imposes
that the time profiles that correspond to a specific combination of a per-
son cluster and a symptom cluster have the same shape, butmay vary in
amplitude scaling.

The remainder of this paper is organized as follows: In the next sec-
tion, the new 2M-KSC model is introduced. In Section 3, we discuss the
2M-KSC loss function and an algorithm for estimating themodel param-
eters. Next, we elaborate onmodel selection. Section 4 reports a simula-
tion study to evaluate the performance of this algorithm. In Section 5we
apply 2M-KSC to dataset version 3.0 of the STAR*D study. Finally, in
Section 6, we demonstrate the usefulness of 2M-KSC in other domains
of application and compare our method with existing, related pheno-
type methods.
2. Model

As stated above, 2M-KSC is a model for multivariate time profiles.
More specifically, 2M-KSC assumes that J symptoms are measured at
T time points for I persons. The T time points are comparable across
the persons and the symptoms, implying that the data can be mean-
ingfully arranged in a three-way three-mode data array X. Through-
out this subsection we will make use of the hypothetical data set in
Fig. 1, which consists of time profiles of the day-to-day severity of 4
depression symptoms collected for five MDD persons, across 10 treat-
ment days. This data set can be perfectly reconstructed by a 2M-KSC
model.

2M-KSC simultaneously clusters the I persons into K person clusters
and the J symptoms into C symptom clusters. This clustering is exclu-
sively based on the shape of the time profiles under study, discarding
any amplitude scaling differences (while taking into account time shifts,
warps, and severity shifts, see Introduction). All the time profiles that
correspond to a specific combination of a person cluster and a symptom
cluster aremodeledwith one particular reference profile, which reflects
their typical evolution over time. Furthermore, each observed time
profile receives an amplitude score, indicating its overall intensity rela-
tive to its corresponding reference profile. Specifically, this amplitude
score indicates howmuch the reference profile has to be inflated or de-
flated to obtain the observed profile.
oms for five MDD persons across ten treatment days.



Table 1
Partition scores pik and pjc, and amplitude scores fij of the 2M-KSC model with two person and two symptom clusters, for the hypothetical dataset in Fig. 1.

Person partition scores Symptom partition scores Amplitude scores

Person Cluster 1 Cluster 2 Symptom Cluster 1 Cluster 2 Problems falling
asleep

Waking up during
night

Lack of
concentration

Difficulties decision
making

Person 1 1 0 Problems falling asleep 1 0 Person 1 5.9 7.4 7.2 8.2
Person 2 1 0 Waking up during night 1 0 Person 2 8.5 4.4 6.4 5.2
Person 3 1 0 Lack of concentration 0 1 Person 3 1.9 5.8 5.6 3.1
Person 4 0 1 Difficulties decision making 0 1 Person 4 9.8 6.7 2.9 6.1
Person 5 0 1 Person 5 3.4 6.3 7.5 5.2
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More formally, each observed time profile xij (Tx1) is modeled1 as:

xij ¼
XK
k¼1

XC
c¼1

pikpjc f ijbkc þ eij ð1Þ

with pik a binary partition class membership score indicating to which
of the K person clusters the ith person belongs (where each person
belongs to a single cluster only), pjc a binary partition class member-
ship score indicating to which of the C symptom clusters the jth
symptom belongs (again, each symptom belongs to a single cluster
only), fij the amplitude score of the time profile of symptom j and
person i, bkc (Tx1) the reference profile of the bicluster resulting
from the combination of person cluster k and symptom cluster c,
and eij (Tx1) the residual scores. To identify the obtained solution,
the reference profiles bkc are scaled to a norm of one. Like Heylen,
Van Mechelen, Verduyn, and Ceulemans [21], we discard the profile
alignment feature of the KSC model of Yang and Leskovec [15] as
time shifts between symptom severity profiles are meaningful shape
differences.

For instance, Table 1 and Fig. 2 depict a 2M-KSC model of the hypo-
thetical data set in Fig. 1. From Table 1, we can distinguish two person
clusters, the first consisting of the first three persons and the second
of persons 4 and 5. Moreover, the model contains two symptom
clusters, the first containing symptoms that relate to sleep problems
(problems falling asleep, waking up during the night) and the second
symptoms that relate to cognitive difficulties (lack of concentration,
difficulties with decision making). As can be seen from Fig. 2, which
displays the time profiles that are assigned to each bicluster as well
as the corresponding reference profile multiplied with the mean am-
plitude score for the corresponding bicluster, the two person clusters
differ strongly with respect to the evolution of their sleep symptoms
(symptoms improve for person cluster 1 after the fourth treatment
day, but worsen for person cluster 2), whereas for cognitive symptoms
differences are small (steady improvement). However, the severity of
the symptoms largely differs within each bicluster, as is also revealed
by the amplitude scores in Table 1.

3. Data analysis

3.1. Loss function

For a given number of person clusters K and symptom clusters C, the
aim of a 2M-KSC analysis is to find the person and symptom partitions,
1 The 2M-KSC decomposition rule bears some resemblance to that of the Tucker2
[17,18] and Tucker2-HICLAS [19,20] models. The difference with Tucker2 is that
pik and pjc are binary partitioning scores rather than continuous values, strictly imposing
simple structure on the person and symptommodes, and that the 2M-KSC decomposition,
unlike that of Tucker2, includes fij values to capture amplitude scaling differences. 2M-KSC
differs from Tucker2-HICLAS in that the lattermodel is based on an overlapping clustering
of the person and symptom modes and is intended for modeling binary data, for which
amplitude scaling is no issue.
amplitude coefficients fij and reference profiles bkc that minimize the
following least squares loss function:

L ¼
XI

i¼1

XJ

j¼1

xij−
XK
k¼1

XC
c¼1

pikpjc f ijbkc

�����
�����
2

: ð2Þ

3.2. Algorithm

Tominimize loss function (2), we propose to use an alternating least
square (ALS) algorithm, which consists of the following steps:

1. Initialize the person and symptom partitions: Randomly assign the I
persons to the K person clusters, and the J symptoms to the C symp-
tom clusters. Each person cluster and each symptom cluster have an
equal probability of being assigned to. No empty clusters are allowed.

2. For each combination of a person and symptom cluster, estimate the
corresponding reference profile bkc and amplitude coefficients fij: For
each combination of a person cluster k and a symptom cluster c
(i.e., biclusterkc) collect the Ikc profiles assigned to this bicluster in a
matrix Xkc (TxIkc). Conduct an eigenvalue decomposition on XkcXkc

' .2

The eigenvector that corresponds to the largest eigenvalue is
used as the estimate of the reference profile, while the amplitude
coefficients fij of the Ikc time profiles are computed as: fij=
xij' bkc(bkc'bkc)= xij' bkc. Note that this step is equivalent to extracting
the first principal component fromXkc. This boils down to computing
the singular value decomposition of Xkc and setting bkc to the first
left singular vector and the fij scores to the corresponding entries
of the first right singular vector times the first singular value.

3. For each person i, update the optimal assignment to a person cluster
k, given the current estimates of pjc and bkc: For this purpose, two
steps are taken, conditional upon the current estimates of the
symptom partition and the reference profiles. First, we compute
the amplitude coefficient fij(k) for all J time profiles of person i if that
person would be re-assigned to cluster k (for each of the K person
clusters; note that k determines which reference profile is used):
fij
(k)=xij' bkc. This yields a K x J amplitude coefficients matrix for
person i. Second, we calculate for each person cluster k the contribu-
tion of person i to the overall loss function (given the current param-
eter estimates) if that person would be re-assigned to that cluster,

Lik ¼ ∑
J

j¼1
kxij−∑

C

c¼1
pjc f

ðkÞ
ij bkc

����
2

, selecting the appropriate J amplitude

coefficients. Person i subsequently is assigned to the person cluster
k for which Lik is minimal. Checkwhether each of the person clusters
contains at least one person. If this is not the case, move the person
that fits its current cluster the least to the empty cluster3.
2 Note that Yang and Leskovec [15] perform an eigenvalue decomposition on
XkcXkc ′ −(IkcI(T)), where I indicates a T x T identity matrix and T reflects the number
of time points. However, it can be proven making use of properties of the eigenvalue de-
composition, that decomposing XkcXkc′ leads to precisely the same eigenvectors.

3 Beforemoving this subject, we checkwhether this subject is the only subject in its cur-
rent subject cluster. If this is the case wemove on to the subject that fits its current cluster
the second least, and so on.



Fig. 2. Reference profiles multiplied with themean amplitude score of the corresponding bicluster of the 2M-KSCmodel with two person and two symptom clusters for the hypothetical
data in Fig. 1. The observed time profiles are displayed as well.
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4. Update the reference profiles bkc and amplitude coefficients by exe-
cuting Step 2.

5. For each symptom j, update the optimal assignment to a symptom
cluster c, given the current estimates of pik and bkc: Exchanging
the roles of the persons and the symptoms, this step is completely
analogous to Step 3.

6. Update the reference profiles bkc and amplitude coefficients by exe-
cuting Step 2.

7. Repeat Steps 3 to 6 until the algorithm has converged, that is, until
the decrease in loss function L (2) is smaller than 10−6.

Note that in the original KSC algorithm of Yang and Leskovec [15],
Step 2 is preceded by scaling each time profile to a norm of one. This
scaling is done to ensure that each time profile has a similar impact on
the shape of the reference profile. We discarded it in our algorithm,
since it also has an important drawback: It increases the weight of
symptoms that hardly occur.

As generally holds for ALS algorithms (see e.g., [22,23]), the 2M-KSC
algorithmmay end in a local minimum. Therefore, we propose to use a
multistart procedure in which the algorithm is run a large number of
times (e.g., 500 and preferably more, if computation time allows)
using a different random initialization of both the person and symptom
partition. Also, the use of a rational start for the patient and symptom
partitions can be considered. To this end, we propose to conduct a
three-mode partitioning [24] with 500 random initializations of both
the person and symptom partitions. Being a three-mode extension of
K-means clustering, three-mode partitioning clusters the elements of
each mode into mutually exclusive groups and summarizes the inter-
relations between these three sets of clusters in a so-called core
array, of which the entries equals the means of the corresponding
data scores. Here, we extract K clusters for the person mode, C clusters
for the symptom mode and T clusters for the time mode; the latter ac-
tually implies that the time mode is clustered into a trivial partition of
singleton classes. Thus, the core array vector that corresponds to the cth
symptom cluster and kth person cluster yields an estimate of the refer-
ence profile of biclusterkc. Note that, before conducting the three-mode
clustering, we scale the time profiles to a norm of one. This scaling dis-
cards all amplitude scaling differences implying that the method will
focus on shape differences. The scaling step is necessary when using
the K-means extension because, unlike KSC, K-means based methods
will entangle shape and amplitude when clustering time profiles,
since thesemethods donot leave room for amplitude scalingdifferences
within a cluster.

3.3. Model selection

For empirical data sets, the optimal number of person clusters K and/
or symptom clusters C is usually unknown. The resulting model selec-
tion problem can be tackled by estimating 2M-KSC solutions with 1
up to Kmax person clusters and 1 up to Cmax symptom clusters, and
retaining a model that has a good balance between fit and complexity,
and is stable as well. To this end, we recommend to combine the
CHull procedure of Ceulemans and Kiers ([25,26]; for software, see
[27]) with a split-half stability analysis. Of course, substantive reasoning
may further support the final choice for a specific solution.

The CHull procedure generalizes thewell-known scree test of Cattell
[28]. Based on a complexity (X-axis) versus fit (Y-axis) plot of the differ-
ent (K, C) solutions, it looks for the solution forwhichholds that the gain
in fit due to additional person or symptom clusters levels off. As a mea-
sure of fit we will use the percentage of the sum of the squared data
entries accounted for by the model. Regarding complexity, we propose
to use the sum K + C of the number of person and symptom clusters
(see [29]). CHullfirst selects the solutionswith a goodfit-complexity bal-
ance by discarding all solutions that are located below the higher bound-
ary of the convex hull of the complexity versus fit plot. Next, it computes
the scree test ratio's sth of the retained (so-called) hull solutions:

sth ¼
f h− f h−1

ch−ch−1

,
f hþ1− f h
chþ1−ch

ð3Þ

with fh and ch the fit and complexity values of the hth hull solution re-
spectively, to determinehowmuchfit increases by allowing for addition-
al clusters. It is recommended to pick a solution with a high scree test
ratio.

To evaluate the split-half stability of a specific solution, one should
first decide which datamode (i.e., persons or symptoms) can be consid-
ered the samplingmode, containing a random sample of the population
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under study. Note that the time mode is always left intact since the
shape of the timeprofiles refers to the intensity scores on all time points.
Usually, the sampling mode will be the person mode. Provided that the
sampling mode is sufficiently large, we will randomly split it into two
halves (while leaving the two other data modes intact). Next, the anal-
ysis is re-run on the two halves and stability is evaluated by comparing
the obtained partitions and reference profiles for the twohalves to those
of the original solution.

4. Simulation study

4.1. Design and procedure

The aim of this simulation study is to evaluate the performance of the
proposed two-mode KSC algorithm in finding the best-fitting solution
and recovering the true underlying model. In this study the number of
persons I was fixed to 40 and the number of symptoms J to 16. Seven
other data characteristics, that are expected to influence the performance
of the algorithm [30,31,32], were manipulated in a full factorial design:

1. the number of time points T at two levels: 5 and 20;
2. the number of person clusters K at 2 levels: 2 and 4;
3. the number of symptom clusters C at 2 levels: 2 and 4;
4. the size of the person clusters at 3 levels [33]: equal, unequal with

majority (60% of persons in one person cluster, the other persons
equally distributed over the remaining person clusters), unequal
with minority (10% of the persons in one person cluster, the other
persons equally distributed over the remaining person clusters);

5. the size of the symptom clusters at 3 levels [33]: equal, unequal with
majority, unequal with minority. This is done in the sameway as de-
scribed above;

6. the lowest congruence between the reference profiles that are
associated with two person (resp. symptom) clusters, conditional
upon a specific symptom (resp. person) cluster, at two levels: low
(minimal ϕ between 0.00 and 0.50) and high (minimal ϕ between
0.70 and 0.90);

7. the amount of error e, which is the proportion kEk2
kXk2 of the expected

sum of the squared residuals in the residual matrix E and the ex-
pected sum of the squared observations in the data matrix X, at 3
levels: 0.20, 0.40, and 0.60.
Fig. 3. True underlying reference profiles for two simulated data sets with 20 time points, two p
minimal congruence (b).
We generated 20 data matrices for each cell of the design, by con-
structing the time profile of person i and symptom j as follows:

xij ¼ tij þ eij:

¼ f trueij btrue
kc þ eij

where tij is the true underlying time profile, resulting from the true am-
plitude score fijtrue and the true reference profile bkctrue, which is associat-
ed with the combination of person cluster k, to which person i is
allocated and symptom cluster c, to which symptom j is assigned. The
true amplitude scores fijtrue were randomly sampled from the normal
distribution N(50,10) (truncated at 0). The partition scores pik and
pjc were generated by first computing the size of the different person
clusters and symptom clusters (i.e., according to the design) and then
randomly assigning the correct number of persons and symptoms to
the clusters. The reference profiles bkctrue were generated as theweighted
combination of three different probability density functions (pdf),
namely beta, lognormal and normal pdfs. The weight of the first pdf
(w1) was uniformly sampled between 0 and 100, the weight of the
second pdf (w2) between 0 and 100-w1 and the weight of the third
pdf (w3) amounted to 100 − (w1 + w2). The parameters of the beta
pdf were uniformly sampled between 1 and 10.5, the lognormal mean
eμ between 0 and T and the lognormal standard deviation between 0
and T/5, and both the normal mean and standard deviation between 0
and T. Next, we ran through all combinations of two different person
clusters and computed, for each symptom cluster, the Tucker congru-
ence between the associated reference profiles. Furthermore, we did
the same for all combinations of two different symptom clusters,
where for each person cluster the congruence of the reference profiles
was computed. At this point, it was checked whether the minimal
congruence of all these combinations met the specified criterion,
i.e., between .00 and .50 in the low congruence conditions and between
.70 and .90 in the high congruence conditions; if not, we generated new
reference profiles. To illustrate this further, Fig. 3 displays the true
underlying reference profiles of two simulated datasets, one with low
minimal congruence (Fig. 3a) and one with high minimal congruence
(Fig. 3b). Both datasets have 20 time points, two person clusters, and
two symptom clusters. Specifically, for the low minimal congruence
data set this means that: (1) within at least one of the two person
erson clusters, and two symptom clusters, and with lowminimal congruence (a) and high
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clusters, the congruence between the reference profiles of the two
symptom clusters is low (i.e., between .00 and .50:within person cluster
1,ϕ= .57;within person cluster 2:ϕ= .28), and (2)within at least one
of the two symptom clusters, the congruence between the reference
profiles of the two person clusters is low aswell (within symptom clus-
ter 1,ϕ= .23; within symptom cluster 2 ϕ= .60). For the highminimal
congruence data set: (1) across the person clusters, the minimal con-
gruence between the reference profiles of the two symptom clusters is
high (i.e., between .70 and .90: within person cluster 1, ϕ= .88; within
person cluster 2ϕ=.85), and (2) across the symptom clusters, themin-
imal congruence between the reference profiles of the two person clus-
ters is high aswell (within symptomcluster 1,ϕ=.71;within symptom
cluster 2 ϕ = .87).

As we focus on symptom severity time profiles in this paper, which
are always non-negative, the residuals eijwere sampled froma truncated
normal distribution N (μ,σij

2)|eij≥−tij,with μ=0 and σij
2 chosen in such

a way that∑I
i¼1 ∑

J
j¼1 Eðeij2Þ ¼ kTk2 e

1�e ; with T the true data matrix.
In total, 2 (number of time points) × 2 (number of person clus-

ters) × 2 (number of symptom clusters) × 3 (size of person clusters) × 3
3 (size of symptom clusters) × 2 (congruence of the reference pro-
files) × 3 (amount of error) × 20 (replicates) = 8640 simulated data
sets were generated. Each data set was analyzed with 2M-KSC, using
the correct number of person clusters K and symptom clusters C, using
500 random initializations and one rational initialization of the partition
scores pik and pjc, as described in the previous section.
4.2. Results

4.2.1. Sensitivity to local minima
Ideally, we want our algorithm to find the global minimum, that is,

the solution associated with the lowest possible loss function value.
However, due to the error perturbations in our simulated data, this
global minimum is unknown (see e.g., [34]). Therefore, we obtain a sur-
rogate global minimum by seeding the 2M-KSC algorithmwith the cor-
rect partition scores pik and pjc. Subsequently, we compared the loss
function value of the best solution out of the 501 runs (500 random
Fig. 4. Boxplots of the attraction rates (%) as a function of the number of person clusters, the n
between reference profiles, and the amount of error on the data.
and one rational) with this surrogate global minimum value. If the dif-
ference between the loss function value of the best solution and the
loss function value of the surrogate global minimum value is bigger
than 10−6, our algorithm ended in a local minimum for sure. This was
the case for 369 out of the 8640 data sets (4.3%). The majority of the as-
sociated data sets contained four symptom clusters (72%), four subject
clusters (68%), had a high degree of congruency (66%), and/or contained
a lot of error (i.e., e = .60; 54%).

For each data set we computed the attraction rate, which equals the
percentage of the 501 initializations that ends up in a loss function
value that differs less than 10−6 from that of the finally selected solu-
tion. On average, we found an attraction rate of 34% (171 out of 501
starts). To analyze how the attraction rate differs as a function of the
manipulated characteristics, we performed an analysis of variance
(ANOVA). Only considering the effects for which the partial eta-
squared values ηp2 exceed .20, we found sizeable main effects of the
number of person clusters (ηp2= .45), the number of symptom clusters
(ηp2= .31), the size of the symptom clusters (ηp2= .21), the degree of
congruence between the reference profiles (ηp2= .40), and the amount
of error on the data (ηp2= .56). In general, less random runs end up in
the retained solution when the data are more complex, the reference
profiles are more congruent and the data contain more error (see Fig.
4). Since all of these data characteristics are almost always unknown
beforehand when analyzing an empirical data set, and since tracking
attraction rates during the analysis is cumbersome (e.g., whenever a
better run is encountered, the attraction rate has to be set to zero
again), we advise to consistently use a high number of random starts
when running 2M-KSC analyses.

To examine if the attraction rate predicts whether a data set ends up
in a local minimum, we performed a logistic regression with a binary
dummy, indicating whether the analysis yielded a local minimum
for sure, as dependent variable and the attraction rate as independent
variable. The results revealed that a lower attraction rate (%) significant-
ly contributes to the odds of ending up in a local minimum (B=−0.18,
p b .005). Based on this result, we recommend to rerun the analysis
whenever one encounters low attraction rates, to double-check the
findings.
umber of symptom clusters, the size of the symptom clusters, the degree of congruence



Fig. 5. Boxplots of the person ARI as a function of (a) the number of time points and (b) the congruence between reference profiles and the amount of error on the data.
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4.2.2. Goodness of recovery
We evaluated the goodness of recovery of the obtained solutions

with respect to (a) the person clustering and (b) the symptom
clustering.

(a) Recovery of the person clustering

We used the Adjusted Rand Index (ARI; [35]), computed between
the true person partition and the estimated one, to examine how well
the person clustering was recovered. This ARI value is one when both
partitions are equal, zero when they resemble each other as expected
by chance and is negative when they resemble each other less than ex-
pected by chance.

Overall a mean person ARI of .81 was found. Moreover, for the ma-
jority of data sets (5479 out of 8640; 63%) the person ARI equals one.
We performed an ANOVA, with the person ARI as dependent variable
and the seven manipulated data characteristics as independent
variables to investigate their influence on the person ARI. We found
sizeable main effects of the number of time points (ηp2= .35), the
degree of congruence between reference profiles (ηp2= .41), and
the amount of error on the data (ηp2= .53), and an interaction
effect of congruence between reference profiles and amount of error
(ηp2= .26). These effects imply that the person clustering is recovered
worse when less time points are available, when the data contain
more error and when reference profiles are more congruent, and
Fig. 6. Boxplots of the symptom ARI as a function of (a) the number of time points, (b) t
that the congruence effect is stronger in case the error level is higher
(see Fig. 5).

(b) Recovery of the symptom clustering

We found an overall mean symptom ARI of .87. Furthermore, for
6821 out of the 8640 data sets (80%) a symptom ARI value of one is
found. We studied the influence of the manipulated characteristics
on the variable ARI by means of an ANOVA. Sizeable main effects
of the number of time points (ηp2= .23),the congruence between
reference profiles (ηp2= .26), and the amount of error on the data
(ηp2= .38) were found. These effects imply that the symptom clustering
is recovered worse when the data consist of less time points, when the
reference profiles are more congruent, and when the data contains
more error (see Fig. 6).

5. Application

Clinical trials commonly study the effect of a particular biomedical or
behavioral intervention. Whereas this effect may be different for differ-
ent symptoms or persons [36], closer investigations at either symptom-
or person level are still the exception. In this paper we will focus on a
single mental disorder, namely major depressive disorder, which is
highly prevalent and puts a strong burden on society [37]. Especially
for the treatment of MDD, insights into differential symptom and/or
person effects could greatly advance the field, seeing that a number of
he congruence between reference profiles and (c) the amount of error on the data.



Fig. 7. Graphical representation of the complexity of the obtained 2M-KSC solutions for the STAR*D data (i.e., sum of person and symptom clusters) versus their goodness of fit
(i.e., percentage of sum of squares explained). The full line represents the higher boundary of the convex hull. The st values of the eight hull solutions are displayed above this line.
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large meta-analyses have shown that antidepressants only slightly out-
perform placebos [38,39,40,41]. Indeed, these meta-analyses focus
on the main effect of antidepressants, while the size of this effect is
moderated by person characteristics as well as symptom features
(e.g., [42,43]). Therefore, with this application, we aim to examine
whether persons can be divided into a number of person clusters
andwhether symptoms can be divided into a number of symptom clus-
ters, where combinations of a person and a symptom cluster are associ-
ated with distinct symptom severity time profiles. Taken together, we
hope to uncover symptom and person differences in response to the
intervention.

To this end, we analyze data set version 3.0 from the NIH-supported
STAR*D study [3,4]4. In this study, a total of 1240MDDpatients received
the selective serotonin reuptake inhibitor (SSRI), citalopram for at least
five subsequent clinical visits5 (week 0, 2, 4, 6, and 9 of the treatment).
However, within this group of 1240 patients a lot of data were missing
not at random6. To adequately handle this wewould have to implement
multiple imputation methods. This extension falls outside the scope
of this manuscript, as this application is merely a proof-of-principle
study. Consequently, we listwise deleted persons with missing scores.
This way, we end up analyzing the symptom time profiles (five time
points) of 169 MDD patients. To monitor treatment during the STAR*D
study, clinicians rated the Quick Inventory of Depressive Symptoms
(QIDS; [44]), containing the following depression symptoms: (1) prob-
lems falling asleep, (2) waking up during the night, (3) waking up too
early, (4) sleeping too much, (5) feeling sad, (6) decreased or increased
appetite, (7) decreased or increased weight, (8) lack of concentration
and difficulties with decision making, (9) negative view of myself,
(10) thoughts of death or suicide, (11) lack of general interest, (12)
low energy level, (13) feeling slowed down, and (14) feeling restless.
At entry and exit, some additional characteristics were evaluated:
overall MDD symptom severity, functional outcome, quality of life,
side effects, patient satisfaction and utilization and cost, assessing the
number of times a healthcare provider or Emergency Roomwas visited
or the number of times a hospital admissionwas required for bothmen-
tal health and other medical reasons.

To find an optimal two-mode KSCmodel for this dataset, we applied
the CHull procedure described in Section 3.3 followed by split-half
4 This manuscript reflects the views of the authors and may not reflect the opinions or
views of the STAR*D Study Investigators or the NIH.

5 This amount of time points was chosen to have enough points to reliably cluster the
data.

6 This is due to several reasons (e.g., treatment discontinuation due to decrease or in-
crease of symptoms, or switching treatment).
stability analyses. More specifically, we analyzed our data with the
2M-KSC algorithm with both K, the number of person clusters, and C,
the number of symptom clusters, varying from one to five. For each
value of K and C, we used 500 random initializations and 1 rational
initialization7 of both the person and symptom partitions. Fig. 7 dis-
plays the percentage of sum of squares accounted for by the different
obtained (K, C) solutions, as a function of their complexity K + C. Fur-
thermore, the scree test ratios st for the 8models on the upper boundary
of the convex hull of this plot, are shown. Next, we examined the stabil-
ity of the four hull models with the highest scree ratios: the (2,1)model,
the (4,2) model, the (5,2) model, and the (5,4) model.

For this purpose, we randomly split the personmode of the data into
two halves and analyzed both resulting data halves with 2M-KSC (and
repeated this procedure ten times). To decidewhether or not a solution
should be retained for further inspection, we examined the stability of
the person clustering, by comparing the person clusterings resulting
from the analyses of the two halves with the person clustering resulting
from the analysis of the full data set. To deal with the permutational
freedomof the person and symptom clusterings, we evaluated all possi-
ble permutations and retained the one thatmaximized themean Tucker
congruence value between the reference profiles from the analyses of
the halves and those from the analysis of the full data set. Next, we
counted the number of persons for whom the cluster membership
switched from the analysis of the full data to that of the data halves.
The frequencies of data splits for which these numbers were observed
are displayed in Fig. 8(a), for each of the four considered model com-
plexities. This Figure reveals that the person clustering of the (2,1)
model is rather stable, with the number of persons switching clusters
varying from 1 to 10. This is clearly not the case for the (4,2), (5,2),
and (5,4) solutions. Based on these results the models with complexity
(4,2), (5,2), and (5,4) will no longer be considered, and the (2,1) model
should be retained.

However, from an illustration point of view, the (2,1) solution is not
ideal, since it contains a single symptom cluster only. Therefore, we will
discuss the (2,2) solution, since it fits only slightly worse than the (3,1)
solution (which is the hull solution of complexity four), since it has a
stable person clustering (see Fig. 8(b); only 3 to 11 persons switched
person cluster)whichmoreover closely resembles that of the (2,1) solu-
tion (only 10 persons are in a different cluster), and since it tells apart
two types of symptoms.
7 Note, that in computing the single rational start in this application, profileswith a con-
stant severity score of zerowere treated as profiles with a constant positive severity score
(N0) in order to be able to scale the profile to a SSQ value of one.



Fig. 8.Histograms of thenumber of persons switching clusters in the split-half stability analyses: (a) histograms for the (2,1), (4,2), (5,2), and (5,4) solutions and (b) histogram for the (2,2)
solutions.
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In the (2,2) solution, out of the 169 MDD patients, 80 were assigned
to the first person cluster and 89 to the second one. Regarding the clus-
tering of symptoms, we find that 10 symptoms are assigned to the first
symptom cluster and four to the second symptom cluster. As the second
symptom cluster comprises problems with falling asleep, waking up
during the night, sleeping too much, and feeling restless, we call this
the ‘agitation hampering sleep’ symptom cluster, while the first symp-
tom cluster will be referred to as the general symptoms cluster. It is
instructive to look at the stability of this symptom clustering in the
split-half stability analyses. In Fig. 9, the gray bars reflect in how many
analyses of data halves the symptomwas assigned to the first symptom
cluster, while the dashed bars indicate how often the symptom was
assigned to the second symptom cluster. This Figure suggests that the
symptom clustering is rather stable with the first cluster always con-
taining the symptoms ‘waking up during the night’ and ‘feeling restless’,
mostly completed with the symptoms ‘sleeping too much’, ‘problems
falling asleep’ and ‘low energy level’. The second cluster always contains
the symptoms ‘feeling sad’, ‘increased or decreased appetite’, ‘increased
or decreased weight’, ‘negative view of myself’, ‘thoughts on death
(2,2) 2M-KSC solution 10% 20% 30%
Waking up during the night 
Feeling restless 
Sleeping too much 
Problems falling asleep 
Low energy level 
Lack of concentration and 
difficulties with decision making
Waking up too early 
Lack of general interest 
Feeling sad 
Decreased/increased appetite 
Decreased/increased weight 
Negative view of myself 
Thoughts of death or suicide
Feeling slowed down 

100% 90% 80%

Fig. 9. Stability of the symptom clustering in the split-half stability analyses of the (2,2) solu
symptom cluster, while the dashed bars indicate how often the symptom was assigned to the
or suicide’, and ‘feeling slowed down’, mostly completed with the
symptoms ‘lack of general interest’, ‘waking up too early’, and ‘lack of
concentration’.

The four obtained reference profiles are displayed in Fig. 10. From
this Figure we conclude that the severity of both symptom clusters de-
creases from time point 1 to time point 5 for patients in the first person
cluster. However, clients in the second person cluster show severity
time profiles that stagnate, meaning that the intervention does not
really change the symptom severity. Therefore the first person cluster
will be referred to as the better response cluster, while the second one
will be labeled the worse response cluster. Within the better response
cluster we also see differences in symptom time profiles for agitation
hampering sleep and general symptoms, namely that the severity de-
crease is higher for general symptoms than for agitation hampering
sleep symptoms, implying that agitation symptoms are more persistent
for these patients.

We used the characteristics measured at exit of the treatment to
validate thepatient clustering, bymeans of point-biserial correlation co-
efficients. For five characteristics the absolute value of this correlation
40% 50% 60% 70% 80% 90% 100%

70% 60% 50% 40% 30% 20% 10%

tions. Gray bars reflect in how many data halves the symptom was assigned to the first
second symptom cluster.



Fig. 10. Obtained reference profiles for the MDD application.
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was stronger than .50; boxplots of these variables are shown in Fig. 11.
We conclude that, at treatment exit, the patients from the better
response cluster showed a better outcome in terms of MDD symp-
toms (Hamilton Rating Scale for Depression, rpb = .55; Inventory of
Depressive Symptomatology — Clinician Rated, rpb = .55; Inventory of
Depressive Symptomatology — Self Rated, rpb = .50), functioning
(Short Form Health Survey — Mental, rpb = −.50) and quality of life
(Quality of Life Enjoyment and Satisfaction, rpb = −.50) than those in
the worse response cluster.

Overall, while the small number of patients examined here cannot
be considered representative of all participants in the STAR *D study,
or of depressed patients in general, we draw three conclusions from
our proof-of-principle study that may be worth investigating in
follow-up studies and larger samples. First, patients in the first person
Fig. 11. Boxplots of five patient characteristics as a function of person cluster, wit
cluster respond better to the citalopram treatment as they show a
stronger relative decrease in symptom severity. Second the effect of
citalopram is stronger on general depression symptoms than on agita-
tion hampering sleep symptoms. Third patients in the first cluster
show a higher functional outcome and quality of at treatment exit
than patients in the second person cluster.
6. Discussion

In this discussion, we will first discuss some other application areas,
where 2M-KSCmight be useful. Next,we godeeper into themodel char-
acteristics and compare 2M-KSC to other biclustering methods at the
phenotype level (see Introduction).
h 1 indicating the better response cluster and 2 the worse response cluster.
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6.1. Other domains of application

Intervention studies are only one of the possible fields of application
of 2M-KSC. In psychology and special education, prospective studies
have gained much attention in the last years, in which multiple vari-
ables are tracked across time for multiple persons. For example, many
psychological studies track mental health of persons (e.g., students)
across time in multiple-wave longitudinal designs, measuring several
aspects of psychological well-being at each time point (e.g., [45]).
Similarly, in special education, researchers aim to gain insight into de-
velopmental problems such asmathematical learning difficulties by ex-
ploring the associations between arithmetic strategy development,
numerical magnitude processing, working memory and phonological
processing across time (e.g., [46]).

2M-KSC could also be of use in systems biology and metabolomics
where the presence of an abundance of biological variables (e.g., biomol-
ecules, metabolites) in biological samples (e.g., urine, blood) is tracked
across time, often under different experimental conditions (e.g., [47]).
2M-KSC would allow to unravel whether or not the partitioning of the
samples and variables is respectively related to the different experimen-
tal conditions and biological processes, while simultaneously revealing
differential effects of the experimental conditions on these processes.

Moreover in environmental studies, one often measures multiple
pollution parameters (e.g., water quality, air quality, presence of differ-
ent chemicals) across time at different geographical sites. The question
then rises whether biclusters of sites and pollution parameters can be
foundwhich are characterized by distinct evolution profiles of pollution
across time. This is another question that could be tackled by 2M-KSC.

Finally, in signal processing, databases are available on the amount
of emails a set of persons send to each other across time (e.g., the fa-
mous ENRON email corpus; [48]). Applying 2M-KSC would allow to
inspect whether groups of senders and receivers can be discerned
for which email correspondence for instance peaks at different points
in time.

6.2. Similarities and differences between 2M-KSC and other methods at the
phenotype level

As stated in the Introduction, interest in clustering the multivariate
time profiles of different persons has strongly increased. In this paper,
we are particularly interested in biclusteringmethods that can simulta-
neously cluster both persons and variables, based on the phenotype of
the associated time profiles. Thus, although a much larger literature
on biclustering methods exists (e.g. [49,50,51,52,53]), we will focus
on methods that are developed to find biclusters in a longitudinal
three way setting (e.g., [48,54,55,56,57,58]). In the next paragraphs
we review the differences and similarities between 2M-KSC and these
other phenotype level methods, making use of three distinguishing
characteristics.
Fig. 12. Possible assignment patterns: (a) exclusive person and variable clustering, (b) exclusive
with exclusive biclustering and, (d) overlapping person and variable clustering with overlappin
and shading).
A first distinguishing characteristic pertains to the nature of the clus-
tering of the persons and the variables, and the resulting biclustering.
Regarding the clustering of the persons and the variables, this clustering
can either be exclusive (each person/variable belongs to one cluster at
maximum) or overlapping (each person/variable can belong tomultiple
clusters) on the one hand, and partial (not all persons/variables are
clustered) or complete (all persons/variables are clustered) on the
other hand, and may be different for persons and variables. If at least
one of both clusterings is exclusive, the biclusters are exclusive as well
(panels a and b of Fig. 12). In case both the person and variable clus-
tering are overlapping, the associated biclustering can be exclusive
(panel c of Fig. 12) or overlapping (panel d of Fig. 12). Whereas 2M-
KSC implies an exclusive and complete person and variable clustering
(panel a of Fig. 12), many of the alternativemethods induce overlapping
and partial clusterings (e.g., [48,54,55,56,57,58]) because most of them
were built to study gene expression. Indeed, it makes sense that single
genes can be associated with multiple biological functions or processes
[59] while others do no play a role in the processes under study.

The second characteristic pertains to the type of biclusters, as
biclusters can either be homogeneous, heterogeneous on the persons
or heterogeneous on the variables. When a bicluster is homogeneous
this means that all time profiles within the same bicluster are modeled
by exactly the same reference profile, as is the cased in 2M-KSC or in
both the coclustering method of Papalexakis, Sidiropoulos and Bro
[48] and the tensor factorization methods of Li, Ye, Wu, and Ng [55],
and Zhang, Wang, Ashby, Chen and Huang [58]. When a bicluster is
heterogeneous on the persons (resp. variables), each person (resp.
variable) in the bicluster has its own reference profile, but this reference
profile stays the same for all variables (resp. persons) within the
bicluster. Gene expression focusedmethods use inmost cases heteroge-
neous biclusters. For instance, Jiang et al. [54] look for biclusters of genes
and conditions (i.e., modules) in which each gene displays the same
time profile for all conditions in the module, but the profiles of the
separate genes may differ, while Polanski et al. [56] rather allow for
heterogeneity across conditions. Furthermore, Supper et al. [57] induce
homogeneous as well as heterogeneous biclusters.

The third and last characteristic pertains to whether or not the
method is built on a fit measure that indicates how well the total data
set is reconstructed. 2M-KSCmodels the total data set by simultaneous-
ly partitioning all rows and columns intomutually exclusive clusters. To
this end a loss function is used that indicates howmuchof the variability
in the observed data is captured by themodel. In contrast, most, but not
all (e.g., [48]), alternative methods sequentially extract biclusters, with-
out considering how well they fit the complete data (e.g. [54,56,57],).

Table 2 summarizes these similarities and differences between
the different methods. Note that which method is most appropriate
depends on the particular data set at hand and the associated re-
search questions. For instance, an alternative research question about
the STAR*D data could be which subset of symptoms are similarly
person and overlapping variable clustering, (c) overlapping person and variable clustering
g biclustering; for both partial (dark gray coloring) and complete clustering (gray coloring



Table 2
Overview of the similarities and differences between 2M-KSC and related methods.

Method Nature of clustering Type of biclusters Reconstruction total data set

2M-KSC (2016) Exclusive + complete Homogeneous Yes
Papalexakis, Sidiropoulos, & Bro (2013) [48] Overlapping + partial Homogeneous Yes
Jiang, Pei, Ramanathan, Tang, & Zhang (2004) [54] Overlapping + partial Heterogeneous No
Li, Ye, Wu, & Ng (2012) [55] Overlapping + partial Homogeneous Yes
Polanski, Rhodes, Hill, Zhang, Jenkins, Kiddle, et al. (2014) [56] Overlapping + partial Heterogeneous No
Supper, Strauch, Wanke, Harter, & Zell (2007) [57] Overlapping + partial Homogeneous + heterogeneous No
Zhang, Wang, Ashby, Chen, & Huang (2012) [58] Overlapping + partial Homogeneous Yes
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influenced by the citalopram medication for a subset of MDD patients
(where the exact form of this influence may differ from patient to pa-
tient within the subset, implying heterogeneity), without making any
claims about the similarity of these symptoms for the other patients
(implying that the clusteringmay be partial and that no full reconstruc-
tion of the data set is needed). In that casewe could opt to use either the
method of Jiang et al. [54] or the method of Polanski et al. [56].
6.3. Conclusion

We introduced 2M-KSC to study how the shape of multivariate time
profiles varies as a function of the persons and variables under study. To
this aim, persons and variables are partitioned simultaneously, relating
each combination of a person and variable cluster, and thus each
bicluster, to a single reference profile. This reference profile reflects
the prototypical shape of the profiles in the bicluster, discarding ampli-
tude scaling differences. Such differences are modeled by means of am-
plitude scores.
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