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Psychological Networks

A psychological network is a model in which nodes represent observed psychological
variables, usually psychometric test items such as responses to questions about whether
a person suffered from insomnia or fatigue in past weeks. These nodes are connected by
edges which indicate some statistical relationship between them. These models are con-
ceptually different from commonly used reflective latent variable models that explain the
co-occurrence among symptoms (e.g., the fact that individuals often suffer from sadness,
insomnia, fatigue, and concentration problems at the same time) by invoking an underlying
unobserved latent trait (e.g., depression) as the common cause of all the symptoms. Psy-
chological networks offer a different conceptual interpretation of the data and explain such
co-occurrences via direct relationships between symptoms; for example, someone who sleeps
poorly will be tired, and someone who is tired will not concentrate well (Fried et al., 2015;
Schmittmann et al., 2013). Such relationships can then be more easily interpreted when
drawn as a network structure where edges indicate pathways on which nodes can affect each
other. The edges can differ in strength of connection, also termed edge weight (Epskamp,
Cramer, Waldorp, Schmittmann, & Borsboom, 2012), indicating if a relationship is strong
(commonly visualized with thick edges) or weak (thin, less saturated edges) and positive
(green edges) or negative (red edges). After a network structure is estimated, the visualiza-
tion of the graph itself tells the researcher a detailed story of the multivariate dependencies
in the data. Additionally, many inference methods from graph theory can be used to assess
which nodes are the most important in the network, termed the most central nodes.
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Directed and Undirected Networks

In general, there are two types of edges that can be present in a network: an edge
can be directed, in which case one head of the edge has an arrowhead indicating a one-way
effect, or an edge can be undirected, indicating some mutual relationship. A network that
contains only directed edges is termed a directed network, whereas a network that contains
only undirected edges is termed an undirected network (Newman, 2010). Many fields of
science consider directed networks interesting because they can be used to encode causal
structures (Pearl, 2000). For example, the edge insomnia→ fatigue can be taken to indicate
that insomnia causes fatigue. The work of Pearl describes that such causal structures can be
tested using only observational cross-sectional data and can even be estimated to a certain
extent (Kalisch, Mächler, Colombo, Maathuis, & Bühlmann, 2012; Scutari, 2010). However,
when temporal information is lacking, there is only limited information present in cross-
sectional observational data. Such estimation methods typically only work under two very
strict assumptions (a) that all entities which play a causal role have been measured and (b)
that the causal chain of cause and effect is not cyclic (i.e., a variable cannot cause itself via
any path). Both assumptions are not very plausible in psychological systems. Furthermore,
such directed networks suffer from the problem that many equivalent models can exist that
feature the same relationships found in the data (MacCallum, Wegener, Uchino, & Fabrigar,
1993); this makes the interpretation of structures difficult. For example, the structure
insomnia→ fatigue→ concentration is statistically equivalent to the structure insomnia←
fatigue → concentration as well as the structure insomnia ← fatigue ← concentration: All
three only indicate that insomnia and concentration problems are conditionally independent
after controlling for fatigue.

For the reasons outlined above, psychological networks estimated on cross-sectional
data are typically undirected networks. The current state-of-the-art method for estimating
undirected psychological network structures involves the estimation of PMRFs. A PMRF
is a network model in which edges indicate the full conditional association between two
nodes after conditioning on all other nodes in the network. This means when two nodes
are connected, there is a relationship between these two nodes that cannot be explained by
any other node in the network. Simplified, it can be understood as a partial correlation
controlling for all other connections. The absence of an edge between two nodes indicates
that these nodes are conditionally independent of each other given the other nodes in the
network. Thus, a completely equivalent undirected structure (compared to the structures
described above) would be insomnia — fatigue — concentration, indicating that insomnia
and concentration problems are conditionally independent after controlling for fatigue.

Figure 1 shows a PMRF similar to the example described above. In this network, there
is a positive relationship between insomnia and fatigue and a negative relationship between
fatigue and concentration. The positive edge is thicker and more saturated than the negative
edge, indicating that this interaction effect is stronger than that of the negative edge. This
network shows that insomnia and concentration do not directly interact with each other in
any way other than through their common connection with fatigue. Therefore, fatigue is the
most important node in this network—a concept we will later quantify as centrality. These
edges can be interpreted in several different ways. First, as shown above, the model is in line
with causal interpretations of associations among the symptoms. Second, this model implies
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Figure 1 . Example of a pairwise Markov random field. Node A positively interacts with
node B, and node B negatively interacts with node C. Nodes A and C are conditionally
independent given node B.

that insomnia and fatigue predict each other after controlling for concentration; even when
we know someone is concentrating poorly, that person is more likely to suffer from insomnia
when we observe that person suffering from fatigue. Similarly, fatigue and concentration
predict each other after controlling for insomnia. After controlling for fatigue, there is
no longer any predictive quality between insomnia and concentration, even though these
variables are correlated; fatigue now mediates the prediction between these two symptoms
(Epskamp, Maris, Waldorp, & Borsboom, in press). Finally, these edges can represent
genuine symmetric causal interactions between symptoms (e.g., in statistical physics, a
PRMF called the Ising model is used to model particles that cause neighboring particles to
be aligned). We refer the reader to Epskamp, Waldorp, Mõttus, and Borsboom for a longer
introduction to the above-mentioned interpretation of edges in a PMRF.

Network Inference

In the first step of network analysis, the obtained network is typically presented
graphically to show the structure of the data (Epskamp et al., 2012). Afterwards, inference
methods derived from graph theory can be applied to the network structure. The estimated
PRMF is always a weighted network, which means that we not only look at the structure
of the network (e.g., are two nodes connected or not) but also at the strength of connection
between pairs of nodes. Because of this, many typical inference methods that concern
the global structure of the network (e.g., small-worldness, density, and global clustering;
Kolaczyk, 2009; Newman, 2010; Watts and Strogatz, 1998) are less useful in the context of
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psychological networks because they only take into account whether nodes are connected or
not and not the strength of association among nodes. Because the global inference methods
for weighted networks and PRMFs are still in development and no consensus has been
reached, the network inference section focuses on local network properties: How are two
nodes related, and what is the influence of a single node?

Relationship between two nodes. The relationship between two nodes can be
assessed in two ways. First, we can directly assess the edge weight. This is always a
number that is nonzero because an edge weight of zero would indicate there is no edge.
The sign of the edge weight (positive or negative) indicates the type of interaction, and
the absolute value of the edge weight indicates the strength of the effect. For example, a
positive edge weight of 0.5 is equal in strength to a negative edge weight of −0.5 and both
are stronger than an edge weight of 0.2. Two strongly connected nodes influence each other
more easily than two weakly connected nodes. This is similar to how two persons standing
closer to each other can communicate more easily (via talking) than two people standing
far away from each other (via shouting)—two strongly connected nodes are closer to each
other. As such, the length of an edge is defined as the inverse of the edge strength. Finally,
the distance between two nodes is equal to the sum of the lengths of all edges on the shortest
path between two nodes (Newman, 2010).

Node centrality. The importance of individual nodes in the network can be as-
sessed by investigating the node centrality. A visualization of a network, such as the one
shown in Figure 1, is an abstract rendition of a high-dimensional space in two dimensions.
Although visualizations of network models often aim to place highly connected nodes into
the center of the graph, for instance using the Fruchterman-Reingold algorithm (Fruchter-
man & Reingold, 1991), the two-dimensional visualization cannot properly reflect the true
space of the model. Thus, the metric distance between the placement of nodes in the
two-dimensional space has no direct interpretation as it has in multidimensional scaling,
for instance. Therefore, graph theory has developed several methods to more objectively
quantify which node is most central in a network. Three such centrality measures have
appropriate weighted generalizations that can be used with psychological networks (Op-
sahl, Agneessens, & Skvoretz, 2010). First, node strength, also called degree in unweighted
networks (Newman, 2010), simply adds up the strength of all connected edges to a node;
if the network is made up of partial correlation coefficients, the node strength equals the
sum of absolute partial correlation coefficients between a node and all other nodes. Second,
closeness takes the inverse of the sum of all the shortest paths between one node and all
other nodes in the network. Thus, where node strength investigates how strongly a node
is directly connected to other nodes in the network, closeness investigates how strongly a
node is indirectly connected to other nodes in the network. Finally, betweenness looks at
how many of the shortest paths between two nodes go through the node in question; the
higher the betweenness, the more important a node is in connecting other nodes.

The bootstrap and centrality indices

The bootstrap is not a foolproof methodology that always works. There are, in fact,
many cases in which the bootstrap fails (Chernick, 2011). One such case is when the
parameter of interest has an expected value at the boundary of the parameter space. In
bootstrapping edge-weights (as described in the main manuscript above), such as partial



SUPPLEMENTARY MATERIALS 5

correlation coefficients, this is not a problem because edge-weights at the boundary of 1
or -1 rarely occur. However, when continuing network inference, we do not use the edge-
weights directly but instead the edge strength: the absolute value of the edge-weight. Here,
a boundary problem is present, as we expect many edges to have an expected value of
exactly zero (implying the absence of an edge). To exemplify, suppose we find an edge-
weight of 0.01 in our original sample, with a standard error of 0.1. When bootstrapping,
95% of the samples should fall roughly in the interval −0.19 to 0.21; the absolute value of
these samples will, almost always, be higher than the original sampled edge strength.

We discovered a two-sided bias when many edge-weights are expected to equal zero
(sparse network structure). First, absolute edge-weights, and as a result centrality indices,
are highly biased estimators of the true parameter. This makes sense: if the true edge-
weight is zero, any estimated absolute edge-weight based on a sample would be higher than
zero. Second, bootstrapped absolute edge-weights are biased as well when the expected
value is zero, because the bootstrap sampling distribution is likely to be centered near zero
leading to many higher absolute edge-weights. To exemplify, we simulated 10,000 pairs
of independent variables (true correlation of zero) and investigated the sample absolute
correlation as well as the absolute correlation of a single nonparametric and parametric
bootstrap. The sample correlation was on average 0.081 higher than the true correlation of
zero, the nonparametric bootstrap was on average 0.032 higher than the sampled absolute
correlation and the parametric bootstrap was on average 0.033 higher than the sampled
absolute correlation.

Computing node strength takes a sum and computing closeness takes the inverse of
a more complicated sum of these biased values; adding up these biases leads to highly
inaccurate estimates of the true parameter. Indeed, we found that it is not uncommon for
quantiles of the bootstrapped strength and closeness to not contain the true parameter at
all, nor even the parameter value based on the original sample. This bias seemed to be
mostly present using non-regularization estimation methods and low sample sizes. Thus,
constructing true CIs for centrality indices—containing the true parameter 95% of the
times—is a challenging research question, involving correcting for bias of the sample due to
true network structure and sample size as well as correcting for the bias in the bootstrap
samples. The current paper does not aim to solve this highly technical question, as we are
not so much interested in estimating a region around the true parameter value as that we
are interested in showing the sampling variability of these centrality indices, even if they
are biased.

As explained above, the bootstrap cannot be used to form 95% CIs on centrality
indices. However, we can use the bootstrap to show the reader the importance of taking
centrality in accuracy into account. If we assume that the estimated partial correlation
matrix is the true network structure, then the parametric bootstrap can be used to show
the sampling distribution of such a network model:

boot3 <- bootnet(Data, 100, default = "pcor", type = "parametric")

The 95% quantile regions can be plotted using the following codes:

plot(boot3, statistics = c("strength", "closeness", "betweenness"),
CIstyle = "quantiles")
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Figure 2 . Parametric bootstrap on centrality indices based on the partial correlation net-
work.

which will return a warning on that the intervals cannot be interpreted as 95% CIs. The
argument CIstyle = "quantiles" makes sure quantiles are plotted. By default, bootnet
plots intervals based on the sample centrality plus and minus two times the standard devi-
ation of the bootstraps. Which are more interpretable, even though they still are not true
95% CIs.

Figure 2 shows the resulting plot. If the partial correlation network used is the
true model, then the red line shows the true centrality indices and the gray area the 95%
quantile region of the sampling distribution. The placement of the red line indicates the
aforementioned bias in both bootstrapping and sampling of centrality indices. The size of
the gray area is large in all indices, indicating that the order of centrality indices from any
sample would be very hard to interpret. In the sample on which these plots are based,
none of the 1000 samples captured the true order of any of the centrality indices, and the
probability that the node with the true strongest centrality was correctly detected was only
43%, 36% and 33% for strength, closeness and betweenness respectively.

These plots only show the sampling distribution if the used network is the true
model—which it is not (as the network is estimated from data). Therefore, these plots
should be interpreted with care. However, they do highlight the importance of accuracy
analysis on centrality indices, as the sampling distribution of the true model is likely not
much smaller than the ones shown in these plots.

Loading the PTSD dataset

To download the dataset, go to:

https://datashare.nida.nih.gov/study/nida-ctn-0015

and click on “CTN-0015 Data Files”. The relevant data file is called “qs.csv”, which can be
loaded into R by using the default read.csv function:
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FullData <- read.csv("qs.csv", stringsAsFactors = FALSE)

This loads the data in long format, which contains a column with subject id’s, a column with
the names of the administered items, and a third column containing the item responses.
For network analysis, we need the data to be in wide format. Furthermore, we need to
assign that the response "NOT ANSWERED" indicates a missing response and other responses
are ordinal. Finally, we need to extract relevant dataset at baseline measure for the PTSD
symptom frequency scores. To do this, we can utilize the dplyr and tidyr R packages as
follows:

# Load packages:
library("dplyr")
library("tidyr")
# Frequency at baseline:
Data <- FullData %>%

filter(EPOCH == "BASELINE",
grepl("^PSSR\\d+A$",QSTESTCD)) %>%

select(USUBJID,QSTEST,QSORRES) %>%
spread(QSTEST, QSORRES) %>%
select(-USUBJID) %>%
mutate_each(funs(replace(.,.=="NOT ANSWERED",NA))) %>%
mutate_each(funs(ordered(.,c("NOT AT ALL","ONCE A WEEK",

"2-4 TIMES PER WEEK/HALF THE TIME",
"5 OR MORE TIMES PER WEEK/ALMOST ALWAYS"))))

names(Data) <- seq_len(ncol(Data))
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