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Forbes, Wright, Markon, and Krueger (2017) stated that “psychopathology networks have limited
replicability” (p. 1011) and that “popular network analysis methods produce unreliable results” (p. 1011).
These conclusions are based on an assessment of the replicability of four different network models for
symptoms of major depression and generalized anxiety across two samples; in addition, Forbes et al.
analyzed the stability of the network models within the samples using split-halves. Our reanalysis of the
same data with the same methods led to results directly opposed to theirs: All network models replicated
very well across the two data sets and across the split-halves. We trace the differences between Forbes
et al.’s results and our own to the fact that they did not appear to accurately implement all network models
and used debatable metrics to assess replicability. In particular, they deviated from existing estimation
routines for relative importance networks, did not acknowledge the fact that the skip structure used in the
interviews strongly distorted correlations between symptoms, and incorrectly assumed that network
structures and metrics should be the same not only across the different samples but also across the
different network models used. In addition to a comprehensive reanalysis of the data, we end with a
discussion of best practices concerning future research into the replicability of psychometric networks.

General Scientific Summary
This commentary presents a reanalysis of the data presented in the target article by Forbes, Wright,
Markon, and Krueger (2017) that shows that, contrary to their conclusions, network models replicate
well.
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Network modeling is quickly gaining ground as a promising
way of understanding psychopathological phenomena. As both the
theoretical framework and the statistical modeling routines have
seen rapid development over the past few years, recent articles
have begun to take stock of what has been achieved and to evaluate
which new directions psychopathological network research should

take (Fried & Cramer, 2017; Fried et al., 2017). The reproducibil-
ity of network research ranks firmly among the top priorities: As
Epskamp, Borsboom, and Fried (2017) stated, “the current repli-
cation crisis in psychology stresses the crucial importance of
obtaining robust results, and we want the emerging field of psy-
chopathological networks to start off on the right foot” (p. 989).
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Similarly, replicability was recently highlighted as one of the five
core challenges that the psychopathological network discipline is
facing (Fried & Cramer, 2017).

Thus, the importance of assessing stability and replicability of
network structures stands beyond doubt. Upon reading Forbes,
Wright, Markon, and Krueger’s (2017) conclusions, therefore, our
immediate reaction was one of concern about some of the network
analysis methodologies currently in use, a response we expect
many readers to share, especially because Forbes et al. did not
tread lightly in their assessment of psychopathology networks.
Even though their analysis was limited to just two data sets, they
did not hesitate to draw general conclusions and state that “popular
network analysis methods produce unreliable results” (General
Scientific Summary, p. 1011), have “poor replicability” (p. 1011)
and “limited utility” (p. 1011), so that “novel results originating
from psychopathology networks should be held to higher standards
of evidence before they are ready for dissemination or implemen-
tation in the field” (p. 1011).

However, after we had acquired access to the data sets Forbes et
al. (2017) analyzed and had used the appropriate network analyses,
we found that many of the numerical results from our statistical
analyses turned out vastly different from those of Forbes et al. and
supported the exact opposite of their conclusion: Psychopathology
networks replicate very well. We were able to trace the diverging
results to a number of inaccuracies in their analyses. First, contrary
to their claims, Forbes et al. did not accurately implement state-
of-the-art network analyses, as we show later. Second, their meth-
odology for assessing replication uses debatable measures of rep-
licability. Third, the correlation matrices used by Forbes et al. are
distorted due to the presence of a skip structure in the interview.

In the present commentary, we illustrate how these issues led
Forbes et al. (2017) to underestimate the quality of network meth-
odology. In addition, we discuss best practices to most effectively
conduct research into the reproducibility of psychopathology net-
works.

Evidence That Psychopathology Networks
Replicate Well

When we set out to reproduce Forbes et al.’s (2017) results
using the same analyses on the same National Comorbidity Survey
Replication (NCS-R) and National Survey of Mental Health and
Wellbeing (NSMHWB) data and split-halves,1 we found that net-
works replicated well. Table 1 shows a summary of these results
for Ising models, relative importance networks, and directed acy-
clic graphs (DAGs). We do not report results for association
networks, first because Forbes et al. did not challenge the replica-
bility of association networks and second because we encountered
major issues with the correlation matrices that we discuss in the
next section. In addition to the replicability metrics used by Forbes
et al., we report metrics to facilitate assessment of the degree to
which networks replicate.2 The most intuitive and important of
these metrics, in our view, is the correlation between the network
connections in the NCS-R and NSMHWB data sets. This correla-
tion measures the correspondence between the strength of network
connections found in both data sets. If the correlation equals one,
network connections in the networks are perfectly linearly related
across samples, meaning that the networks have essentially the
same structure; if it equals zero, the networks have no detectable

linear correspondence; if it equals minus one, the networks are
exact opposites.

Table 1 shows that the correlations between network connection
strengths are all well above .9, indicating that the networks found
in the data sets under consideration are highly similar. Figure 1
shows this high correspondence between the network structures by
representing them using the same layout; this is advisable because
even when plotting two exactly identical networks with different
layouts, it is impossible to tell visually how similar networks are.
Our split-half analyses, using the same splits as used by Forbes et
al. (2017), show comparable results: All parametric network mod-
els show correlations between network connection parameters of
well over .9.3 We shortly discuss these results, after which we turn
to the question why Forbes et al. reached conclusions opposite
from ours.

The Ising Model

The Ising model (van Borkulo et al., 2014) is arguably the most
important of the models fitted by Forbes et al. (2017), because it
represents state-of-the-art regularized network model estimation
for pairwise Markov random fields (PMRFs; Epskamp, 2017) in
dichotomous data. Tallying all networks that are reported in the
literature at the moment of writing this comment, 62% used a
variant of the PMRF, and this percentage is growing quickly
because the PMRF has become the default network modeling
technique. It is complemented by robustness analyses in bootnet
(Epskamp et al., 2017) as well as statistical tests for network
invariance (van Borkulo et al., 2016), which are powerful tools in
assessing network estimation quality and testing the equivalence of
network models in different populations, as we illustrate in this
comment.

As Forbes et al. (2017) themselves noted, and as Figure 1 (left
panels) shows, estimated Ising networks are nearly identical: Node
threshold parameters correlate .93 across the data sets, whereas
network connection parameters (edge weights) show a correlation
of .95 (Spearman correlations equal .85 and .88, respectively).
Even though the absolute position of nodes in centrality orders is
not invariant, as also reported by Forbes et al., their relative
positions are strongly aligned: The centrality metrics of strength,
betweenness, and closeness correlate .94, .94, and .76, respec-
tively, across the two data sets. The only sign of nonreplication
concerns the presence of three weak negative edges in the NCS-R
data that were absent in the NSMHWB data; however, this differ-
ence across samples was not statistically significant (as we will
show later in this paper). Split-half analyses, as reported in Ap-
pendix B of the online supplemental materials, show similar results
and indicate high stability of the Ising model.

1 We thank Forbes, Wright, Markon, and Krueger (2017) for providing
us with the exact splits of the data used in the split-half analyses.

2 All analyses we report were performed using R Version 3.3.1 and the
relevant packages on platform �86_64-w64-mingw32. All code is avail-
able at https://osf.io/akywf, with the exception of the NSMHWB data set,
which is not publicly accessible; an instructive summary of our analyses
with a subset of sample code can be consulted in Appendix A of the online
supplemental materials.

3 Results of the split-half analyses are included in Appendix B of the
online supplemental materials.
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Moving beyond descriptive measures, and in contrast to Forbes
et al. (2017), we used the Network Comparison Test (NCT) to
statistically evaluate the similarity of the Ising models estimated
on the NCS-R and NSMHWB data using permutation testing (van
Borkulo et al., 2016). The NCT results also indicate that the
network structures of the NCS-R and NSMHW replicate very well.
First, a test for invariance of network structures, which tests the
null hypothesis that all edges are precisely identical across the
samples, was not significant (M � 2.66, p � .121). Second, testing
for the invariance of individual edges revealed that none of the
edges differed significantly across the two data sets. Thus, despite
the high power to detect differences given the two large samples
(N � 9,000 per sample), we could not reject the null hypothesis
that the NCS-R and NSMHWB networks are precisely identical at
the level of the populations from which these samples were drawn.

Relative Importance Networks

As shown in Figure 1 (middle panels), relative importance
networks, which were estimated by exactly following the original
methodology described in Robinaugh, LeBlanc, Vuletich, and
McNally (2014), replicated even better than did the Ising models.
Uncensored relative importance networks featured a correlation of
.99 between the estimated edge weights in the two data sets, as

well as between split-halves of the same data sets (see Appendix B
of the online supplemental materials). These findings deviate sig-
nificantly from those of Forbes et al. (2017); we explain this
divergence in the next section.

DAG Analysis

Replication results for DAGs were good, although not as excel-
lent as were the results for the Ising models and relative impor-
tance networks. This is not surprising, because DAGs require
stronger assumptions,4 which are less likely to be met in these
data. As Table 1 and Figure 1 show, 27 out of 34 DAG edges
replicated from the NCS-R to the NSMHWB data set (79.4%),
which indicates that the results do converge. In addition, in- and
outdegree of nodes featured correlations of .62 and .87, respec-
tively. Visual inspection of Figure 1 (right panels) shows that the
same bridge symptoms, which connect major depressive episode
(MDE) to generalized anxiety disorder (GAD), are identified in the

4 For example, DAG analysis assumes that the causal graph contains no
cycles and that there are no independence relations in the data that are not
a function of the causal relations coded in the DAG (faithfulness; see, e.g.,
Pearl, 2009, for an extensive treatment).

Table 1
Replication Results of Comparing the Networks for the NCS-R and NSMHWB Data

Variable

Ising models
Relative importance networks

(censored)
Relative importance networks

(uncensored) DAGs

NCS-R NSMHWB NCS-R NSMHWB NCS-R NSMHWB NCS-R NSMHWB

Network characteristicsa

No. of edges (% of possible) 80 (52.3) 79 (51.6) 118 (38.6) 124 (40.5) 306 (100) 306 (100) 34 (22.2) 33 (21.6)
Density (as in Forbes et al.) 1.08 1.17 .13 .12 .06 .06

Quality of replication
Correlation between all edges .95 .98 .99
Correlation for nonzero edges .97 .98 .99
Jaccard indexb .77 .92 1.00 .68
Change in edge weights (%)a 30.4 8.3 22.2
Replicated edges (%)a 69 (86.3) 116 (98.3) 306 (100) 27 (79.4)
Nonreplicated edges (%)a 11 (13.8) 2 (1.7) 0 (0) 7 (20.6)
Edges unique to replication set (%)a 10 (12.7) 8 (6.5) 0 (0) 6 (18.2)

Node centrality correlations
Strength/outstrength/outdegree .94 .94 .98 .87
Instrength/indegree .76 .62
Closeness .76 .98 1.00
Betweenness .94 .84 .92 .79

Most central nodesc

Strength/outstrength/outdegree even even depr depr depr depr depr depr, inte
Instrength/indegree inte weig tie (15 nodes) mFat tie (4 nodes) irri
Closeness depr mFat mFat mSle anxi anxi
Betweenness depr even ctrl even gFat gFat edge depr

Correlation (�b) Matches (%) Correlation (�b) Matches (%) Correlation (�b) Matches (%) Correlation (�b) Matches (%)

Rank-order correspondencea

Strength/outstrength/outdegree .69 3 (16.7) .82 9 (50) .8 4 (22.2) .75 14 (77.8)
Instrength/indegree .39 2 (11.1) .57 16 (88.9)
Closeness .71 3 (16.7) .87 6 (33.3) 1.00 18 (100)
Betweenness .77 11 (61.1) .84 14 (77.8) .57 9 (50) .66 10 (55.6)

Note. In addition to the metrics discussed by Forbes, Wright, Markon, and Krueger (2017; see their Table 2 for detailed explanations), this table reports
Pearson correlations between network parameters in the two samples (all � .9), replication statistics for censored and uncensored relative importance
networks as implemented in accordance with Robinaugh, LeBlanc, Vuletich, and McNally (2014), and most central nodes for different centrality measures
(see Table 1 of Forbes et al. for node abbreviations). NCS-R � National Comorbidity Survey Replication; NSMHWB � National Survey of Mental Health
and Wellbeing; even � anxiety about � 1 event; depr � depressed mood; inte � loss of interest; weig � weight problems; mFat � fatigue; irri �
irritability; mSle � sleep problems; anxi � chronic anxiety/worry; ctrl � no control over anxiety; gFat � fatigue; edge � feeling on edge.
a Computed following the methodology of Forbes et al. b The proportion of shared edges relative to the total number of edges in both networks (shared
and nonshared). c Computed following the methodology of Forbes et al. but for single centrality measures.
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two data sets. Of note, two edges (gFat–gCon and gCon–irri)
switch direction between the data sets.

Cross-Method Replicability

Forbes et al. (2017) counted how often edges showed up in
different network estimation routines. It is clear from the way they
interpreted the resulting findings that they assumed that one should
expect these different networks to converge to 100%. This, how-
ever, is not true. For instance, suppose the data arose from the
DAG A ¡ B ¢ C ¡ D. Then one would not expect to find the
Ising model to return the network A–B–C–D, because B is a
common effect of A and C, and therefore A and C must be
conditionally dependent given B5 (Pearl, 2009). Instead, one ex-
pects the network to also include a direct relation between A and
C. In addition, given this network structure, one would never
expect any correlations to be nonzero in the association network:
Because all variables are connected, one instead expects a fully
connected association network. Thus, counting how often individ-
ual edges replicate across these different network structures is of
limited utility, because it is implausible to expect them to be the
same.

In addition, network estimation techniques differ in sensitivity
and specificity (van Borkulo et al., 2014), meaning that some
techniques more often err on the side of caution and, as such,
identify fewer edges, which should be accommodated in assessing
replicability. For instance, in relative importance networks all
connections are estimated, whereas Ising models estimate only
connections that improve the fit of the model (van Borkulo et al.,
2014). Similarly, given the stronger causal interpretation of edges
in a DAG opposed to Ising models, it is sensible that DAG
estimation methods should be more conservative than are Ising
model estimation methods, leading DAGs to be sparser. Thus, in
addition to principled differences between the edges the methods
should detect in the first place, there are also differences in
sensitivity and specificity that should be accounted for.

Therefore, rather than counting how many edges are present in
different networks, one should investigate a nesting relationship:
A sparser network should not estimate edges that are absent from

5 This is because if A and C are independent causes of B, then knowing
that B is present means that if A is not present and thus did not produce B,
then C must have been the cause of B.

Figure 1. Network structures estimated with the Ising model (left panels), censored relative importance
networks (middle panels), and directed acyclic graphs (DAGs; right panels) for the National Comorbidity Survey
Replication (NCS-R; top panels) and National Survey of Mental Health and Wellbeing (NSMHWB; bottom
panels) data.
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the denser network, and a denser network should not leave out
edges that are present in the sparser network. When assessing this
nesting relation, we found that 100% of the edges in the NCS-R–
DAG (the sparser network) were present in the NCS-R–Ising
model (the denser network). The same holds for the NSMHWB
data. Strikingly, when we compared DAGs and Ising models
across data sets, 97% of the NCS-R–DAG edges were included in
the NSMHWB–Ising model, and 100% of the NSMHWB–DAG
edges were included in the NCS-R–Ising model. In addition, we
found that 100% of the edges that were missing in the Ising models
were also missing in the DAGs. This is the case both in the
split-half analysis and in the replication analysis. Cross-method
replication could hardly be better.6

Why Did Forbes et al. (2017) Underestimate the
Replicability of Psychopathology Networks?

It is remarkable that our results differed so much from those of
Forbes et al. (2017), especially given the strong conclusions they
drew. After studying their methodology in detail, we argue that the
different conclusions originated from two sources. First, Forbes et
al.’s analyses contained several statistical inaccuracies. By “statis-
tical inaccuracies” we mean to identify statistical computations
that we expect Forbes et al. to acknowledge, upon reflection, as
yielding a suboptimal representation of the relations in the data.7

Unfortunately, these inaccuracies have had strong impact on the
results. Second, their results rest on debatable methodologies. By
“debatable methodologies” we mean to identify issues that we see
as problematic but that can be legitimately disputed depending on
one’s point of view on what psychopathology networks should
deliver or even on one’s underlying philosophy of science. We
discuss these issues in turn.

Statistical Inaccuracies

When studying Forbes et al.’s (2017) methodology, we found
that they did not adopt the standard estimation procedure for
relative importance networks introduced by Robinaugh et al.

(2014), nor any other published procedure.8 It is unclear why they
deviated from the standard procedure that is used in Robinaugh et
al. (2014) and, to the best of our knowledge, in all other articles
that have used relative importance networks (Bryant et al., 2017;
Heeren & McNally, 2016; Hoorelbeke, Marchetti, De Schryver, &
Koster, 2016; McNally, 2016; McNally et al., 2015).

First, Forbes et al. (2017) used nonnormalized instead of nor-
malized estimates for the lmg metric to assess relative importance.
Although the optimal choice here is debatable, this poses a devi-
ation from standing methodology that should have been acknowl-
edged. Second, Forbes et al. strictly thresholded networks by
permanently excluding edges under .05 from the network, whereas
Robinaugh et al. (2014) removed these edges for visualization but
not in the computation of centrality measures. Third, and most
important, Forbes et al. deviated from existing work by introduc-
ing a thresholding procedure that has extreme consequences:
Whenever an edge between two nodes (e.g., A ¡ B) did not have
a weight of at least .005 points higher than the corresponding
reciprocal edge for the same two nodes (i.e., A ¢ B), Forbes et al.
removed that edge from the network. This thresholding rule has
not been used anywhere else in the literature, and for good reason.
For suppose A explains 50% of the variance in B, and B explains
50% of the variance in A: Even though these could be the strongest

6 We did not investigate the cross-method replicability including relative
importance networks, because these do not feature careful edge selection
methods.

7 One of these inaccuracies was already acknowledged: The reader may
note that the DAGs in Forbes et al. (2017) are different from the version of
their article that was accepted for publication in the Journal of Abnormal
Psychology, which is the version that the authors had made available online
and that we were asked to comment on (we were subsequently sent the
revised version). The difference is due to an error in the implementation of
DAGs that Forbes et al. caught in time to correct the article between
acceptance and publication.

8 If we deviate in the same way from the literature, we can reproduce
their reported results, and hence we are certain this deviation is the source
of the differences (see Figure 2 for details and Borsboom et al., 2017, for
code replicating both our and Forbes et al.’s analyses).

Figure 2. Relative importance networks (estimated on the National Comorbidity Survey Replication data)
using normalized lmg (left panel, as used by Robinaugh, LeBlanc, Vuletich, & McNally, 2014; 118 edges) and
nonnormalized lmg (middle and right panels). Red edges in the middle panel (99 edges) indicate edges that are
removed by the thresholding rule used by Forbes, Wright, Markon, and Krueger (2017), and the right panel
shows the network they reported (31 edges).
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edges in the network, they both would be removed because neither
of these edges is �.005 points higher than the other.

The consequences of Forbes et al.’s (2017) procedure are illus-
trated in Figure 2. When the relative importance network is com-
puted on the NCS-R data as described by Robinaugh et al. (2014),
the resulting network retains 118 edges (see the left panel). Using
nonnormalized lmg with the same threshold results in a network
that retains 99 edges (see the middle panel). Finally, applying the
deviant thresholding procedure used by Forbes et al. duplicates
their analysis, leaving only 31 out of the original 118 edges (see
the right panel; the red edges in the middle panel network indicate
those removed by Forbes et al.’s thresholding rule). Occasionally
this procedure indeed deletes both edges between two nodes; for
example, both edges between even and ctrl are deleted, as one can
see by comparing the correctly computed network (see Figure 2,
left panel) to the network reported by Forbes et al. (see Figure 2,
right panel).

Thus, these analyses did not replicate the standard procedure
introduced by Robinaugh et al. (2014), or any other procedure
currently in the literature, and introduced a thresholding rule that
caused many edges, including some of the strongest, to be deleted.
We suggest that, as a result, the conclusions presented by Forbes
et al. (2017) that pertain to relative importance networks are not
trustworthy and that our results, as presented in Table 1, should be
consulted instead. It should be noted that these results should still
be interpreted with care, because it is unclear whether relative
importance networks, as used by Robinaugh et al. on continuous
data, generalize well to the binary data analyzed here in the first
place; relative importance networks are computed using linear
regressions, which introduces an inappropriate distributional as-
sumption. However, in contrast to the inaccuracies mentioned, we
were not able to resolve this in the current work; hence, the reader
should keep in mind that both Forbes et al.’s article and our
reanalysis are based on an incorrect distributional assumption
insofar as relative importance networks are concerned.

A second issue that we consider to qualify as a statistical
inaccuracy concerns Forbes et al.’s (2017) use of a distorted
tetrachoric correlation matrix, which underlies both their factor
analyses and their association networks. To see why this correla-
tion matrix is distorted, first note that the Composite International
Diagnostic Interview (Kessler & Ustün, 2004), which yielded the
symptom data, involves a skip structure. This means that the full
symptomatology of MDE is interrogated only if at least one of the
core symptoms of depressed mood and loss of interest was present;
the full symptomatology of GAD is interrogated only if the inter-
viewee reported the presence of anxiety, anxiety about multiple
events, and loss of control about the worry. As such, both the NCS-R
and the NSMHWB data contain a high percentage of missing values.
In both data sets, Forbes et al. imputed 0s for these missing values.
This practice assumes Guttman scale properties for the skipped symp-
toms; that is, if one does not have the symptom of feeling sad over a
period of 2 weeks (a symptom that acts as a gateway in the skip
structure), one cannot have the symptom of insomnia (a nongateway
item). This practice is acceptable in many contexts, and although the
procedure can strongly affect all network models, it does not neces-
sarily invalidate their results. For instance, as can be seen in Figure 1,
the GAD skip structure translates to the sequence anx ¡ eve ¡ ctrl
in the DAG, with eve being the most important gateway item con-
necting to the other symptoms, whereas the MDE skip structure

translates to the sequence depr ¡ inte in MDE. These sequences
accurately reflect the actual order of the symptoms in the interview,
and thus the DAGs correctly pick up the skip structure, which reflects
a true causal structure in the data (see also Borsboom & Cramer,
2013, Figure 7).

Unfortunately, however, imputing zeros for missing values is not
advisable when the goal is to analyze or represent a correlation matrix.
This is because it alters the correlations in the data enormously, as is
graphically represented in Figure 3. To give an indication of how
serious these distortions are, we note that the average correlation
between depression symptoms in the correlation matrix as used by
Forbes et al. equals .94 for the NCS-R data and .96 for the NSMHWB
data. This is unrealistically high and nowhere near the average tetra-
choric correlation of .33 that characterizes the data if missing values
are handled with, for example, pairwise deletion. Also, these values
do not resemble correlations typically found for these kinds of symp-
toms (e.g., see Beard et al., 2016).

In addition, the imputation process introduces deterministic depen-
dencies in the data, which in this case leads the correlation matrices
for both the NCS-R and the NSMHWB data to become nonpositive
definite (this means that the matrices do not have the characteristics
every proper correlation matrix should have and, therefore, should not
be used in standard statistical analyses). As a result, these correlation
matrices are untrustworthy and unrepresentative of the associations
present in the data. Because of this, the results of both association
networks and factor analyses reported by Forbes et al. are unreliable.
Note that the effects of the imputation strategy are visible in all
analyses that Forbes et al. reported and that they affected our analyses
in the same way. At present we are unaware of an analytic strategy
that could address this issue satisfactorily.

It is important to recognize that, because of the problems we
outlined, all statistics reported by Forbes et al. (2017) that pertain
to association networks and relative importance networks are
either inaccurate or corrupted to an unknown extent by Forbes et
al.’s imputation strategy. This has direct consequences for their
findings with respect to cross-method replicability. For example,
their abstract presents, as a main result, that “only 13%–21% of the
edges were consistently estimated across these networks” (p.
1000). These percentages are uninformative, not only because one
does not in fact expect different networks to converge upon the
same structure, as explained in the previous section, but also
because the underlying computations are compromised by statis-
tical inaccuracies, as identified in this section. In fact, the only
interpretable results on cross-method replicability that Forbes et al.
could have obtained pertain to the comparison between Ising
models and DAGs, because these are the only models that they
estimated without problems.9 With respect to this comparison,
however, Forbes et al. claimed that 41 edges of the NCS-R–DAG
were also present in their NCS-R–Ising model (see their footnote
7). Unfortunately, their NCS-R–DAG contained only 34 edges,
which means it is impossible that 41 edges would replicate. We

9 The reader should take care to interpret this statement as applying to
Forbes et al.’s (2017) published article (accompanying this commentary) and
not to the version that the authors had made publicly available, which did not
implement DAGs correctly and which the authors subsequently corrected.
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therefore have no other option than to conclude that none of the
statistics on cross-method replicability reported by Forbes et al. are
accurate.

Debatable Methodology for Assessing Replicability

After pointing out the statistical inaccuracies in Forbes et al.’s
(2017) analyses, this section covers the methodology used to
evaluate the replicability of network models. In contrast to the
issues mentioned in the previous section, one can have legitimately
different points of view on the appropriateness of the measures in
question and the importance of the problems they encounter. In our
view, the main problem with Forbes et al.’s assessment of repli-
cability is that they do not use any measures that would seem of
immediate relevance to any such analysis (e.g., correlations be-
tween the edge weights across samples, as reported in Table 1, or
statistical tests such as the NCT) and instead rely on several
replicability and stability measures that have not been validated
and that are problematic for reasons we explain in this section.

First, Forbes et al. (2017) computed the percentage of change of
the value of a parameter from one data set to the next and then
averaged this percentage over all parameters. This percentage is
relative to the original size of the edge. This means that small
changes in parameters very close to zero can result in huge
differences: For instance, when the same parameter is .00001 in
one dataset and .00003 in the second, the computations of Forbes
et al. convert this into a 300% change, which may be entirely
inconsequential for the interpretation of the network structure.
Figure 4 (left panel) illustrates, for the Ising model, how it is

possible for parameter values to feature an average 30% change
across data sets, even though the network parameters are in fact
nearly identical. The reason is indeed that large percentage
changes are much more likely to occur in small edge weights:
Strong edge weights hardly change at all. As a result, the corre-
lation between edge weights remains extremely high (see Figure 4,
right panel).

To show that this problem arises in latent variable models as
well as networks, we also computed Forbes et al.’s (2017) measure
for the parameters of a two-dimensional item response theory
model fitted on the NCS-R data; when replicating this model on
the NMSHWB data, the percentage parameter change equals 44%,
whereas the correlation between the discrimination parameters in
the two samples equals .96. Moreover, a small simulation in which
we simulated data from a two-factor model and applied Forbes et
al.’s measure resulted in an average parameter change of no less
than 483%, even though the parameters of the model correlated .99
across samples. Thus, factor models show roughly the same be-
havior as do network models with this measure.

We conclude that it is inadvisable to attach normative evalua-
tions to the absolute estimates of this metric, as Forbes et al. (2017)
did when they interpreted the percentage differences in parameter
estimates (“these are all substantial changes in the context of a
model that is promoted for its specificity”; p. 1013). The average
parameter change metric may be productively used in various
methodological investigations (e.g., to compare different models
or estimation routines in simulation studies), but it is unfit to serve
as an arbiter of replicability.

Figure 3. The effect of the imputation strategy used by Forbes, Wright, Markon, and Krueger (2017) on the
network structure of the National Comorbidity Survey Replication (NCS-R) data. The figure shows (a) how
imputation alters the tetrachoric correlation between depression symptoms and (b) the resulting networks. The
correlations shown represent actual NCS-R correlations between four nonskip items (weight problems, sleep
problems, psychomotor problems, and fatigue) before and after imputation. See the online article for the color
version of this figure.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

995FALSE ALARM? A REANALYSIS OF FORBES ET AL. (2017)



Second, Forbes et al. (2017) considered how well the absolute
position of nodes in the centrality ordering replicates, that is, the
question whether a node that ranks 6th in one data set also ranks
6th in the other. Because edge weights and centrality measures are,
as are all other statistics, affected by sampling error, nodes can
shift positions in the rank ordering due to sampling fluctuations.
How strongly sampling fluctuations affect these statistics depends
on (a) the sample size and (b) the differences between nodes in
terms of centrality at the population level (i.e., the network struc-
ture). Epskamp et al. (2017) gave the extreme example where, at
a population level, there are no differences in centrality at all (i.e.,
all nodes are equally central). In this case, one should not expect
that order to replicate at all, because any absolute ordering differ-
ences in a given sample must be due to sampling error.

Therefore, instead of expecting the orderings to replicate by
default, one should inspect both the network structure and the
sampling variability of centrality measures, which shows how
reliably they are estimated and whether differences between them
are statistically significant. Fortunately, the R package bootnet
(Epskamp et al., 2017) can be used for this purpose. Running
bootnet on the Ising model results obtained by Forbes et al. (2017)
showed that most of the edge weights, which are the basis of
centrality calculations, were estimated reliably (see Appendix C of
the online supplemental materials); however, the edges related to
the gateway items used in the skip structure (especially Item 11,
which is the symptom being anxious about multiple events) are
much less reliable, which is likely due to structural zeros in the
contingency tables for these items, as induced in Forbes et al.’s
treatment of missing values. Inspecting the robustness of the
centrality ordering itself reveals that although strength centrality is
estimated stably, closeness and betweenness were much less sta-
ble. Appendix C of the online supplemental materials explains that
this is due to a particularity in the data that likely results from the
skip structure; hence, one should hesitate to generalize this result
to other data sets or modeling contexts. We advise that, in future
research, investigators would do well to interpret centrality results
in the context of a robustness analysis using bootnet.

In addition, correspondence of the absolute positions of nodes in
the centrality ordering across samples, to which Forbes et al.
(2017) attached primary significance, is extremely strict as a
primary measure of replicability. To see this, suppose one has 26
nodes, corresponding to the letters in the alphabet, for which
centrality measures induce the ordering A, B, . . ., Z in one data set.
Then one executes the same analysis in another data set, which
yields the ordering Z, A, B, C, . . . Y. Because none of the variables
occupy the exact same place in the ordering, Forbes et al. would
interpret this as evidence that psychopathology networks do not
replicate (in fact, there would be no correspondence at all in this
case). However, only Z changed position, from least to most
central, and although no node occupies the exact same absolute
position, one should at the same time conclude that the centrality
order does replicate to a large degree, because the relative posi-
tioning is nearly entirely preserved. This does not invalidate
Forbes et al.’s measure of correspondence in absolute position,
which can still be useful, but it does mean that this metric should
be viewed with caution and, of importance, should always be
assessed (a) in the light of stability of the relative positioning of
nodes as assessed by the correlation between centrality scores of
nodes across samples (e.g., .94 for strength and betweenness and
.76 for closeness in the Ising model) and (b) in the light of
sampling variability.

Third, Forbes et al. (2017) expressed concern over the fact that
different centrality measures identified different nodes as central.
However, just as the various network estimation methods get at
different aspects of the data and should not be expected to yield the
same network solution, centrality measures such as strength, be-
tweenness, and closeness are not interchangeable measures that
will converge on “the most influential node,” as Forbes et al.
suggested (p. 1011). Instead, they are indices that assess different
kinds of centrality. Thus, if strength centrality is highest for de-
pressed mood but fatigue shows the highest score on closeness, or
when anxiety about multiple events has the highest strength in the
Ising model but depressed mood has the highest strength in the
DAG, that signals neither a problem nor a cause for concern.

Figure 4. The absolute percentage change in edge weights across data sets relative to the size of the edge
weights (left panel). This panel shows that smaller edge weights show larger changes expressed as a percentage
of the original weight. The right panel shows that these changes are mostly irrelevant: The strong linear relation
(r � .95) between edge weights in the National Comorbidity Survey Replication (NCS-R) and National Survey
of Mental Health and Wellbeing (NSMHWB) data (right panel) is unaffected by the parameter changes.
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Instead, these results, if robust across samples and assessment
methods, should be viewed as potentially important clues about the
structure of a psycho(patho)logical construct under consideration.

So What About Measurement Error?

Because the various network models replicate very well across
data sets, the reader may wonder how this fits in with Forbes et
al.’s (2017) explanation of the supposed poor replication results in
terms of measurement error. That is, Forbes et al. hypothesized
that, because edges between two nodes were controlled for other
nodes in the network, networks primarily work on residual vari-
ances that are largely composed of measurement errors. The results
of our reanalysis provide a direct refutation of this theory: If
Forbes et al.’s explanation were correct, one should expect bad
replicability, but our analyses in fact show replicability to be good.
Also, if Forbes et al.’s explanation were correct, one would expect
simulation studies and robustness analyses to show that network
models produce unreliable results, which is not the case (Epskamp
et al., 2017; van Borkulo et al., 2014).

Indeed, despite the suggestive Venn diagrams used in Forbes et
al.’s (2017) article, the psychometric intuitions that underlie their
argumentation are inaccurate. The following thought experiment
may help elucidate why this is the case. Suppose one encountered
a situation in which all systematic relations between depression
symptoms were due to a latent variable and everything else was
pure random measurement error. If Forbes et al. were correct, this
would imply that a network model should be expected to return a
spurious network without any robust connections: After all, be-
cause in their view partial correlations are largely correlations
between measurement errors, and measurement errors are not
structurally related, there is nothing real for the network to go on.
However, this is not what one would find: If a latent variable
model gave rise to all correlations between variables, then one
would not find an empty network but a fully connected one (Ellis
& Junker, 1997; Epskamp et al., in press). Thus, a latent variable
model corresponds to a dense network of systematic relations
(Marsman, Maris, Bechger, & Glas, 2015) and not to an empty or
spurious network, as Forbes et al.’s theory would suggest.

More generally, one can prove that every latent variable struc-
ture implies a specific network structure, as Molenaar (2003)
already suspected and as Maris and his coworkers have been
recently able to formally prove (Epskamp et al., in press; Kruis &
Maris, 2016; Marsman et al., 2015). Thus, even though network
models do not explicitly represent shared variance in a separate
node that renders the other nodes conditionally independent (i.e., a
latent variable), they do imply the presence of shared variance in
sets of connected nodes. In fact, given that the known mathemat-
ical equivalence relations between the models implies that they
produce the same joint probability distribution for the items, the
models should not be expected to differ in this respect. This has the
somewhat ironic consequence that, if network structures replicated
badly across two data sets, then this would imply that factor
structures (i.e., the configuration of loadings in exploratory factor
models) would replicate badly as well. Measurement error has
little to do with this, because both latent variable models and
network models operate on the same systematic relations in the
data.

Despite this, however, we do note that additional methodolog-
ical research is necessary to systematically study the replication
properties of different models under various conditions, because
these would likely be influenced by various factors such as the
overall fit of the model, the number of parameters (and an impor-
tant caveat of network models is that they typically do require
many parameters to be estimated), and the strength of the associ-
ations in the data. Psychometric intuition, however, is an unreliable
guide in this respect. Thus, mathematical analyses and simulation
studies are required to study these issues, especially when making
critical generalized claims about an entire psychometric field
based on the analysis of two data sets.

Best Practices for Future Research

Despite the inadequacy of the data and analyses used by Forbes
et al. (2017), we stress again that we consider both stability and
replicability of networks to be extremely important topics. There-
fore, we commend Forbes et al. for taking up these issues. Re-
garding stability, we agree with Forbes et al. that model stability
should be tested in all statistical models, including both network
and factor models. Thus, we hope that Forbes et al.’s article—
together with the bootnet R package and the accompanying tutorial
article (Epskamp et al., 2017)—will shift the attention of both
applied and technical researchers to this topic. Regarding replica-
bility, we offer a roadmap for network replication studies in this
section that may aid future researchers in obtaining more objective
and trustworthy results.

The Method: Replication as a Nonempirical Question

First, we address a central issue in the design of Forbes et al.
(2017): They confound evidence for replication problems that
concern a particular estimated model with evidence for prob-
lems of the model in general. This is a non sequitur. For
suppose that one fitted a specific regression model to two
different samples and the regression coefficients were different
from each other. Nobody would conclude from such a result
that “regression analysis has limited replicability”. The problem
with equating “not the same result in two data sets” to “method
does not work” is that one does not know whether the “true”
relationship between variables is the same across samples. In
the absence of this knowledge, one cannot know for sure
whether differences in results are due to differences in sample
characteristics or to a flawed method.

One may think that this problem is circumvented in Forbes et
al.’s (2017) evaluation of split-half results, which are based on
the correspondence of networks within the same sample. How-
ever, this only partly addresses the problem. First, because one
does not know whether split-half performance with this partic-
ular kind of data (here: MDE–GAD symptom data obtained
with interviews containing skips) generalizes to other kinds of
data, as is necessary for blanket statements like “popular net-
work analysis methods produce unreliable results,” as touted in
Forbes et al.’s (2017) General Scientific Summary. Second,
because even in a given sample one does not know whether any
given network model is true, let alone which one, and in the
absence of this knowledge it is impossible to assess which part
of model instability arises from defects in the methodology and
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which part arises from model misfit, population heterogeneity,
violations of distributional assumptions, and so forth.

Thus, if the primary aim of research is to assess the general
methodological adequacy of a method, the evaluation of two
specific empirical data sets is of limited use. Putting a network
method to the test requires that one know the “true” network
structure, and this can be done only by (a) establishing math-
ematical proof that the method converges on the true structure
in the long run (as, e.g., Meinshausen & Bühlmann, 2006, have
done for the Gaussian graphical model and Ravikumar, Wain-
wright, & Lafferty, 2010, for the Ising model) or (b) simulating
such “true” network structures and, subsequently, assessing the
capability of a method, in a variety of settings, to accurately
estimate that “true” network structure (as executed by van
Borkulo et al., 2014, for the Ising model). This motivates the
rule that methodological adequacy should be established on
methodological grounds.

Network Structure of a Psychological Construct:
Replication as an Empirical Question

Once a particular method is proven to accurately retrieve a
“true” network structure using methodological studies, there is
another question of replicability that is empirical in nature;
namely, what is the particular network structure of a psychological
construct such as major depression, or generalized anxiety disor-
der? Answering this question does entail the comparison of net-
work structures across many data sets and many participants. As
we have shown earlier, the design used by Forbes et al. (2017) is
suboptimal in this respect, and this raises the question what kind of
methodological design would be needed to properly assess repli-
cability in network analysis. Although the following list is not
meant to be exhaustive (see Anderson & Maxwell, 2016, for
additional issues in replication research), we suggest these best
practices:

1. No skip structure. If one desires a replicability assessment
that is not confounded by methodological design, one needs
data that do not contain a skip structure. We realize this may be
a challenge given that many data sets, such as NCS-R and
NSMHWB, do contain a skip structure. We also realize that we
are guilty as charged in this respect because we, too, used
NCS-R data, albeit it for illustration or hypothesis-generating
purposes (Borsboom & Cramer, 2013; Cramer, Waldorp, van
der Maas, & Borsboom, 2010). Also, in certain cases there is no
other option than to use a design with skip structures (e.g., one
cannot ask persons who do not drink whether they got into legal
problems because of drinking; Rhemtulla et al., 2016). Future
studies in data sets without skip structure will enable one to
gauge the replicability of psychopathology networks, and we
are glad to see that such studies are already on the way (e.g.,
network replicability across four large clinical posttraumatic
stress disorder data sets; Fried et al., 2017).

2. Open access data and code. Reproducibility studies should
themselves be reproducible. The NSMHWB data used in this
research, however, are not publicly accessible, which means that
third parties cannot replicate either our results or those of Forbes
et al. (2017) without engaging in a lengthy, cumbersome, and
costly procedure to gain access to the data (we were charged
US$947 just to be able to check the veracity of Forbes et al.’s

analyses). This is highly undesirable. Replication studies are dif-
ferent from other studies in that their consequences may be more
far-reaching, because they can discredit or invalidate whole re-
search programs. Therefore, one must be sure that the analyses and
reported results are sound. The only way interested third parties
can verify this is through free access to the data used. We ac-
knowledge that freely available data sets containing clinical patient
data may be challenging, for example due to issues concerning
extending informed consent of patients to third parties. However,
we feel encouraged that important progress is forthcoming due to
a recent article about replicability in clinical science that contains
a multitude of valuable recommendations (Tackett et al., in press).
Analysis code should naturally always be available, because it is
needed to replicate and verify reported analyses—the current re-
port illustrates how important this is—and we commend Forbes et
al. for sharing their code.

3. Preregistration of analyses. Replication research differs from
the exploratory designs in which network analyses are most often
used, because researchers have a clear idea of the hypothesis to be
tested: replication across samples. In addition, especially in repli-
cation research, the selection of measures used to gauge replica-
bility is important: After the data are in, it is always possible to
come up with a particular selection of measures that emphasizes
evidence for or against replicability. To minimize the influence of
subjective choices made after the data are in, we encourage any
replicability effort to be preregistered, for example at the Open
Science Framework (OSF). Preregistration has an additional ad-
vantage, because interested researchers are able to check (a) a
priori hypotheses and (b) the analysis plan. The OSF also allows
for uploading the code that was used for the analyses, so other
researchers can check the veracity of the reported results before the
article is even submitted for review. This reduces the probability of
submitting or even publishing article that later turn out to be ill
founded. In the current study, such a procedure would have safe-
guarded against the statistical inaccuracies manifest in Forbes et al.
(2017).

Conclusion

We think that practically all researchers are united by a common
goal: the pursuit of scientific knowledge. As such, we stress the
importance of expanding the knowledge about psychopathological
networks and acknowledge the challenges ahead (Fried & Cramer,
2017). If one day we were to find out that networks are either not
replicable or that they cannot be suitable candidate models for
explaining psychopathology, then we would consider this a victory
for clinical science—despite our investment in these models. Fal-
sification is an essential component of the scientific enterprise, and
the burden of doing so should fall on everyone and on all theories
and hypotheses.

In our comprehensive reanalysis, however, we have shown that
Forbes et al.’s (2017) devastating conclusions are not licensed by
their analysis. We conclude that the main conclusion of Forbes et
al. that “popular network analysis methods produce unreliable
results” is a strongly overstated generalization that is not warranted
on the basis of their research design and statistical analyses. The
replicability issue, however, is not settled with the publication of
either Forbes et al.’s article or our commentary. It is for this reason
that we have formulated best practices to investigate the important
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replication issue properly, by using adequate data and optimal
analysis designs. Our hope is that future work will lead toward the
robust and replicable scientific knowledge that everyone should be
looking for.
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