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Abstract The usage of psychological networks that con-
ceptualize behavior as a complex interplay of psychological
and other components has gained increasing popularity in
various research fields. While prior publications have tack-
led the topics of estimating and interpreting such networks,
little work has been conducted to check how accurate (i.e.,
prone to sampling variation) networks are estimated, and
how stable (i.e., interpretation remains similar with less
observations) inferences from the network structure (such
as centrality indices) are. In this tutorial paper, we aim to
introduce the reader to this field and tackle the problem
of accuracy under sampling variation. We first introduce
the current state-of-the-art of network estimation. Second,
we provide a rationale why researchers should investigate
the accuracy of psychological networks. Third, we describe
how bootstrap routines can be used to (A) assess the accu-
racy of estimated network connections, (B) investigate the
stability of centrality indices, and (C) test whether network
connections and centrality estimates for different variables
differ from each other. We introduce two novel statistical
methods: for (B) the correlation stability coefficient, and
for (C) the bootstrapped difference test for edge-weights
and centrality indices. We conducted and present simulation
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studies to assess the performance of both methods. Finally,
we developed the free R-package bootnet that allows for
estimating psychological networks in a generalized frame-
work in addition to the proposed bootstrap methods. We
showcase bootnet in a tutorial, accompanied by R syn-
tax, in which we analyze a dataset of 359 women with
posttraumatic stress disorder available online.
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networks · Replicability · Bootstrap · Tutorial

Introduction

In the last five years, network research has gained substantial
attention in psychological sciences (Borsboom & Cramer,
2013; Cramer et al., 2010). In this field of research, psycho-
logical behavior is conceptualized as a complex interplay of
psychological and other components. To portray a potential
structure in which these components interact, researchers
have made use of psychological networks. Psychological
networks consist of nodes representing observed variables,
connected by edges representing statistical relationships.
This methodology has gained substantial footing and has
been used in various different fields of psychology, such
as clinical psychology (e.g., Boschloo et al., 2015; Fried
et al., 2015; McNally et al., 2015; Forbush et al., 2016),
psychiatry (e.g., Isvoranu et al., 2016, 2017; van Borkulo et al.,
2015), personality research (e.g., Costantini et al., 2015a;
Cramer et al., 2012), social psychology (e.g., Dalege et al.,
2016), and quality of life research (Kossakowski et al., 2015).

These analyses typically involve two steps: (1) estimate
a statistical model on data, from which some parame-
ters can be represented as a weighted network between
observed variables, and (2), analyze the weighted network
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structure using measures taken from graph theory (Newman,
2010) to infer, for instance, the most central nodes.1 Step
1 makes psychological networks strikingly different from
network structures typically used in graph theory, such
as power grids (Watts & Strogatz, 1998), social networks
(Wasserman & Faust, 1994) or ecological networks (Barzel
& Biham, 2009), in which nodes represent entities (e.g.,
airports, people, organisms) and connections are gener-
ally observed and known (e.g., electricity lines, friendships,
mutualistic relationships). In psychological networks, the
strength of connection between two nodes is a parame-
ter estimated from data. With increasing sample size, the
parameters will be more accurately estimated (close to the
true value). However, in the limited sample size psycholog-
ical research typically has to offer, the parameters may not
be estimated accurately, and in such cases, interpretation of
the network and any measures derived from the network
is questionable. Therefore, in estimating psychological net-
works, we suggest a third step is crucial: (3) assessing the
accuracy of the network parameters and measures.

To highlight the importance of accuracy analysis in psy-
chological networks, consider Figs. 1 and 2. Figure 1 (left
panel) shows a simulated network structure of eight nodes
in which each node is connected to two others in a chain
network. The network model used is a Gaussian graph-
ical model (Lauritzen, 1996), in which nodes represent
observed variables and edges represent partial correlation
coefficients between two variables after conditioning on all
other variables in the dataset. A typical way of assessing
the importance of nodes in this network is to compute cen-
trality indices of the network structure (Costantini et al.,
2015a; Newman, 2010; Opsahl et al., 2010). Three such
measures are node strength, quantifying how well a node
is directly connected to other nodes, closeness, quantifying
how well a node is indirectly connected to other nodes, and
betweenness, quantifying how important a node is in the
average path between two other nodes. Figure 1 (right panel)
shows the centrality indices of the true network: all indices
are exactly equal. We simulated a dataset of 500 individ-
uals (typically regarded a moderately large sample size in
psychology) using the network in Fig. 1 and estimated a
network structure based on the simulated data (as further
described below). Results are presented in Fig. 2; this is
the observed network structure that researchers are usually
faced with, without knowing the true network structure.
Of note, this network closely resembles the true network
structure.2 As can be seen in Fig. 2 (right panel), however,

1An introduction on the interpretation and inference of network mod-
els has been included in the Supplementary Materials.
2Penalized maximum likelihood estimation used in this analysis typ-
ically leads to slightly lower parameter estimates on average. As a
result, the absolute edge-weights in Fig. 2 are all closer to zero than
the absolute edge-weights in the true network in Fig. 1.

centrality indices of the estimated network do differ from
each other. Without knowledge on how accurate the central-
ity of these nodes are estimated, a researcher might in this
case falsely conclude that node F (based on strength) and G
and H (based on closeness and betweenness) play a much
more important role in the network than other nodes.

Only few analyses so far have taken accuracy into account
(e.g., Fried et al., 2016), mainly because the methodology
has not yet been worked out. This problem of accuracy
is omnipresent in statistics. Imagine researchers employ a
regression analysis to examine three predictors of depres-
sion severity, and identify one strong, one weak, and one
unrelated regressor. If removing one of these three regres-
sors, or adding a fourth one, substantially changes the
regression coefficients of the other regressors, results are
unstable and depend on specific decisions the researchers
make, implying a problem of accuracy. The same holds
for psychological networks. Imagine in a network of psy-
chopathological symptoms that we find that symptom A
has a much higher node strength than symptom B, leading
to the clinical interpretation that A may be a more rele-
vant target for treatment than the peripheral symptom B
(Fried et al., 2016). Clearly, this interpretation relies on the
assumption that the centrality estimates are indeed differ-
ent from each other. Due to the current uncertainty, there is
the danger to obtain network structures sensitive to specific
variables included, or sensitive to specific estimation meth-
ods. This poses a major challenge, especially when substan-
tive interpretations such as treatment recommendations in
the psychopathological literature, or the generalizability of
the findings, are important. The current replication crisis in
psychology (Open Science Collaboration, 2015) stresses the
crucial importance of obtaining robust results, and we want
the emerging field of psychopathological networks to start
off on the right foot.

The remainder of the article is structured into three sec-
tions. In the first section, we give a brief overview of
often used methods in estimating psychological networks,
including an overview of open-source software packages
that implement these methods available in the statistical
programming environment R (R Core Team, 2016). In the
second section, we outline a methodology to assess the
accuracy of psychological network structures that includes
three steps: (A) estimate confidence intervals (CIs) on the
edge-weights, (B) assess the stability of centrality indices
under observing subsets of cases, and (C) test for significant
differences between edge-weights and centrality indices.
We introduce the freely available R package, bootnet,3 that
can be used both as a generalized framework to estimate
various different network models as well as to conduct the

3CRAN link: http://cran.r-project.org/package=bootnet
Github link (developmental): http://www.github.com/SachaEpskamp/
bootnet
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Fig. 1 Simulated network structure (left panel) and the importance of
each node quantified in centrality indices (right panel). The simulated
network is a chain network in which each edge has the same absolute

strength. The network model used was a Gaussian graphical model
in which each edge represents partial correlation coefficients between
two variables after conditioning on all other variables

accuracy tests we propose. We demonstrate the package’s
functionality of both estimating networks and checking their
accuracy in a step-by-step tutorial using a dataset of 359
women with post-traumatic stress disorder (PTSD; Hien
et al., 2009) that can be downloaded from the Data Share
Website of the National Institute on Drug Abuse. Finally,
in the last section, we show the performance of the pro-
posed methods for investigating accuracy in three simu-
lations studies. It is important to note that the focus of
our tutorial is on cross-sectional network models that can
readily be applied to many current psychological datasets.

Many sources have already outlined the interpretation of
probabilistic network models (e.g., Epskamp et al., 2016;
Koller & Friedman, 2009; Lauritzen, 1996), as well as net-
work inference techniques, such as centrality measures, that
can be used once a network is obtained (e.g., Costantini
et al., 2015a; Kolaczyk, 2009; Newman, 2004; Sporns et al.,
2004).

To make this tutorial stand-alone readable for psycho-
logical researchers, we included a detailed description of
how to interpret psychological network models as well as
an overview of network measures in the Supplementary
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Fig. 2 Estimated network structure based on a sample of 500 peo-
ple simulated using the true model shown in Fig. 1 (left panel) and
computed centrality indices (right panel). Centrality indices are shown

as standardized z-scores. Centrality indices show that nodes B and C
are the most important nodes, even though the true model does not
differentiate in importance between nodes
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Materials. We hope that this tutorial will enable researchers
to gauge the accuracy and certainty of the results obtained
from network models, and to provide editors, reviewers, and
readers of psychological network papers the possibility to
better judge whether substantive conclusions drawn from
such analyses are defensible.

Estimating psychological networks

As described in more detail in the Supplementary Materials,
a popular network model to use in estimating psycholog-
ical networks is a pairwise Markov random field (PMRF;
Costantini et al. 2015a, van Borkulo et al. 2014), on which
the present paper is focused. It should be noted, however,
that the described methodology could be applied to other
network models as well. A PMRF is a network in which
nodes represent variables, connected by undirected edges
(edges with no arrowhead) indicating conditional depen-
dence between two variables; two variables that are not
connected are independent after conditioning on other vari-
ables. When data are multivariate normal, such a conditional
independence would correspond to a partial correlation
being equal to zero. Conditional independencies are also
to be expected in many causal structures (Pearl, 2000). In
cross-sectional observational data, causal networks (e.g.,
directed networks) are hard to estimate without stringent
assumptions (e.g., no feedback loops). In addition, directed
networks suffer from a problem of many equivalent models
(e.g., a network A → B is not statistically distinguish-
able from a network A ← B; MacCallum et al., 1993).
PMRFs, however, are well defined and have no equivalent
models (i.e., for a given PMRF, there exists no other PMRF
that describes exactly the same statistical independence
relationships for the set of variables under consideration).
Therefore, they facilitate a clear and unambiguous interpre-
tation of the edge-weight parameters as strength of unique
associations between variables, which in turn may highlight
potential causal relationships.

When the data are binary, the appropriate PRMFmodel to
use is called the Ising model (van Borkulo et al., 2014), and
requires binary data to be estimated. When the data follow
a multivariate normal density, the appropriate PRMF model
is called the Gaussian graphical model (GGM; Costantini
et al., 2015a, Lauritzen, 1996), in which edges can directly
be interpreted as partial correlation coefficients. The GGM
requires an estimate of the covariance matrix as input,4

4While the GGM requires a covariance matrix as input, it is important
to note that the model itself is based on the (possibly sparse) inverse
of the covariance matrix. Therefore, the network shown does not
show marginal correlations (regular correlation coefficients between
two variables). The inverse covariance matrix instead encodes partial
correlations.

for which polychoric correlations can also be used in case
the data are ordinal (Epskamp, 2016). For continuous data
that are not normally distributed, a transformation can be
applied (e.g., by using the nonparanormal transformation;
Liu et al., 2012) before estimating the GGM. Finally, mixed
graphical models can be used to estimate a PMRF contain-
ing both continuous and categorical variables (Haslbeck &
Waldorp, 2016b).

Dealing with the problem of small N in psychological data
Estimating a PMRF features a severe limitation: the num-
ber of parameters to estimate grows quickly with the size
of the network. In a ten-node network, 55 parameters (ten
threshold parameters and 10 × 9/2 = 45 pairwise associ-
ation parameters) need be estimated already. This number
grows to 210 in a network with 20 nodes, and to 1275 in
a 50-node network. To reliably estimate that many param-
eters, the number of observations needed typically exceeds
the number available in characteristic psychological data.
To deal with the problem of relatively small datasets, recent
researchers using psychological networks have applied the
‘least absolute shrinkage and selection operator’ (LASSO;
Tibshirani, 1996). This technique is a form of regular-
ization. The LASSO employs such a regularizing penalty
by limiting the total sum of absolute parameter values—
thus treating positive and negative edge-weights equally—
leading many edge estimates to shrink to exactly zero and
dropping out of the model. As such, the LASSO returns
a sparse (or, in substantive terms, conservative) network
model: only a relatively small number of edges are used to
explain the covariation structure in the data. Because of this
sparsity, the estimated models become more interpretable.
The LASSO utilizes a tuning parameter to control the degree
to which regularization is applied. This tuning parame-
ter can be selected by minimizing the Extended Bayesian
Information Criterion (EBIC; Chen & Chen, 2008). Model
selection using the EBIC has been shown to work well in
both estimating the Ising model (Foygel Barber & Drton,
2015; van Borkulo et al., 2014) and the GGM (Foygel
& Drton, 2010). The remainder of this paper focuses on
the GGM estimation method proposed by Foygel & Drton,
(2010; see also Epskamp and Fried, 2016, for a detailed
introduction of this method for psychological researchers).

Estimating regularized networks in R is straightforward.
For the Ising model, LASSO estimation using EBIC has
been implemented in the IsingFit package (van Borkulo
et al., 2014). For GGM networks, a well-established and
fast algorithm for estimating LASSO regularization is the
graphical LASSO (glasso; Friedman et al., 2008), which
is implemented in the package glasso (Friedman et al.,
2014). The qgraph package (Epskamp et al., 2012) uti-
lizes glasso in combination with EBIC model selection
to estimate a regularized GGM. Alternatively, the huge
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(Zhao et al., 2015) and parcor (Krämer et al., 2009) pack-
ages implement several regularization methods—including
also glasso with EBIC model selection—to estimate a
GGM. Finally, mixed graphical models have been imple-
mented in the mgm package (Haslbeck & Waldorp, 2016a).

Network accuracy

The above description is an overview of the current state
of network estimation in psychology. While network infer-
ence is typically performed by assessing edge strengths
and node centrality, little work has been done in investi-
gating how accurate these inferences are. This section will
outline methods that can be used to gain insights into the
accuracy of edge weights and the stability of centrality
indices in the estimated network structure. We outline sev-
eral methods that should routinely be applied after a network
has been estimated. These methods will follow three steps:
(A) estimation of the accuracy of edge-weights, by draw-
ing bootstrapped CIs; (B) investigating the stability of (the
order of) centrality indices after observing only portions of
the data; and (C) performing bootstrapped difference tests
between edge-weights and centrality indices to test whether
these differ significantly from each other. We introduced
these methods in decreasing order of importance: while (A)
should always be performed, a researcher not interested in
centrality indices might not perform other steps, whereas
a researcher not interested in testing for differences might
only perform (A) and (B). studies have been conducted to
assess the performance of these methods, which are reported
in a later section in the paper.

Edge-weight accuracy

To assess the variability of edge-weights, we can estimate
a CI: in 95 % of the cases such a CI will contain the true
value of the parameter. To construct a CI, we need to know
the sampling distribution of the statistic of interest. While
such sampling distributions can be difficult to obtain for
complicated statistics such as centrality measures, there is
a straight-forward way of constructing CIs many statistics:
bootstrapping (Efron, 1979). Bootstrapping involves repeat-
edly estimating a model under sampled or simulated data
and estimating the statistic of interest. Following the boot-
strap, a 1− α CI can be approximated by taking the interval
between quantiles 1/2α and 1 − 1/2α of the bootstrapped
values. We term such an interval a bootstrapped CI. Boot-
strapping edge-weights can be done in two ways: using
non-parametric bootstrap and parametric bootstrap (Bollen
& Stine, 1992). In non-parametric bootstrapping, observa-
tions in the data are resampled with replacement to create
new plausible datasets, whereas parametric bootstrapping

samples new observations from the parametric model that
has been estimated from the original data; this creates a
series of values that can be used to estimate the sampling
distribution. Bootstrapping can be applied as well to LASSO
regularized statistics (Hastie et al., 2015).

With NB bootstrap samples, at maximum a CI with
α = 2/NB can be formed. In this case, the CI equals the
range of bootstrapped samples and is based on the two most
extreme samples (minimum and maximum). As such, for a
certain level of α at the very least 2/α bootstrap samples are
needed. It is recommended, however, to use more bootstrap
samples to improve consistency of results. The estimation
of quantiles is not trivial and can be done using various
methods (Hyndman & Fan, 1996). In unreported simulation
studies available on request, we found that the default quan-
tile estimation method used in R (type 7; Gumbel, 1939)
constructed CIs that were too small when samples are nor-
mally or uniformly distributed, inflating α. We have thus
changed the method to type 6, described in detail by Hynd-
man and Fan (1996), which resulted in CIs of proper width
in uniformly distributed samples, and slightly wider CIs
when samples were distributed normally. Simulation stud-
ies below that use type 6 show that this method allows for
testing of significant differences at the correct α level.

Non-parametric bootstrapping can always be applied,
whereas parametric bootstrapping requires a parametric
model of the data. When we estimate a GGM, data can be
sampled by sampling from the multivariate normal distri-
bution through the use of the R package mvtnorm (Genz
et al., 2008); to sample from the Ising model, we have devel-
oped the R package IsingSampler (Epskamp, 2014). Using
the GGM model, the parametric bootstrap samples continu-
ous multivariate normal data—an important distinction from
ordinal data if the GGM was estimated using polychoric
correlations. Therefore, we advise the researcher to use the
non-parametric bootstrap when handling ordinal data. Fur-
thermore, when LASSO regularization is used to estimate
a network, the edge-weights are on average made smaller
due to shrinkage, which biases the parametric bootstrap. The
non-parametric bootstrap is in addition fully data-driven
and requires no theory, whereas the parametric bootstrap is
more theory driven. As such, we will only discuss the non-
parametric bootstrap in this paper and advice the researcher to
only use parametric bootstrap when no regularization is used
and if the non-parametric results prove unstable or to check for
correspondence of bootstrapped CIs between both methods.

It is important to stress that the bootstrapped results
should not be used to test for significance of an edge being
different from zero. While unreported simulation studies
showed that observing if zero is in the bootstrapped CI
does function as a valid null-hypothesis test (the null-
hypothesis is rejected less than α when it is true), the utility
of testing for significance in LASSO regularized edges is
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questionable. In the case of partial correlation coefficients,
without using LASSO the sampling distribution is well
known and p-values are readily available. LASSO regular-
ization aims to estimate edges that are not needed to be
exactly zero. Therefore, observing that an edge is not set to
zero already indicates that the edge is sufficiently strong to
be included in the model. In addition, as later described in
this paper, applying a correction for multiple testing is not
feasible, In sum, the edge-weight bootstrapped CIs should
not be interpreted as significance tests to zero, but only to
show the accuracy of edge-weight estimates and to compare
edges to one-another.

When the bootstrapped CIs are wide, it becomes hard to
interpret the strength of an edge. Interpreting the presence of
an edge, however, is not affected by large CIs as the LASSO
already performed model selection. In addition, the sign of
an edge (positive or negative) can also be interpreted regard-
less of the width of a CI as the LASSO rarely retains an edge
in the model that can either be positive or negative. As cen-
trality indices are a direct function of edge weights, large
edge weight CIs will likely result in a poor accuracy for
centrality indices as well. However, differences in central-
ity indices can be accurate even when there are large edge
weight CIs, and vice-versa; and there are situations where
differences in centrality indices can also be hard to interpret
even when the edge weight CIs are small (for example, when
centrality of nodes do not differ from one-another). The next
section will detail steps to investigate centrality indices in more
detail.

Centrality stability

While the bootstrapped CIs of edge-weights can be con-
structed using the bootstrap, we discovered in the process
of this research that constructing CIs for centrality indices
is far from trivial. As discussed in more detail in the
Supplementary Materials, both estimating centrality indices
based on a sample and bootstrapping centrality indices
result in biased sampling distributions, and thus the boot-
strap cannot readily be used to construct true 95 % CIs even
without regularization. To allow the researcher insight in the
accuracy of the found centralities, we suggest to investigate
the stability of the order of centrality indices based on sub-
sets of the data. With stability, we indicate if the order of
centrality indices remains the same after re-estimating the
network with less cases or nodes. A case indicates a single
observation of all variables (e.g., a person in the dataset)
and is represented by rows of the dataset. Nodes, on the
other hand, indicate columns of the dataset. Taking subsets
of cases in the dataset employs the so-called m out of n

bootstrap, which is commonly used to remediate problems
with the regular bootstrap (Chernick, 2011). Applying this

bootstrap for various proportions of cases to drop can be
used to assess the correlation between the original centrality
indices and those obtained from subsets. If this correlation
completely changes after dropping, say, 10 % of the cases,
then interpretations of centralities are prone to error. We
term this framework the case-dropping subset bootstrap.
Similarly, one can opt to investigate the stability of central-
ity indices after dropping nodes from the network (node-
dropping subset bootstrap; Costenbader & Valente, 2003),
which has also been implemented in bootnet but is harder
to interpret (dropping 50 % of the nodes leads to entirely
different network structures). As such, we only investigate
stability under case-dropping, while noting that the below
described methods can also be applied to node-dropping.

To quantify the stability of centrality indices using subset
bootstraps, we propose a measure we term the correla-
tion stability coefficient, or short, the CS-coefficient. Let
CS(cor = 0.7) represent the maximum proportion of cases
that can be dropped, such that with 95 % probability the
correlation between original centrality indices and centrality of
networks based on subsets is 0.7 or higher. The value of 0.7
can be changed according to the stability a researcher is
interested in, but is set to 0.7 by default as this value has
classically been interpreted as indicating a very large effect
in the behavioral sciences (Cohen, 1977). The simulation
study below showed that to interpret centrality differences
the CS-coefficient should not be below 0.25, and preferably
above 0.5. While these cutoff scores emerge as recommenda-
tions from this simulation study, however, they are somewhat
arbitrary and should not be taken as definite guidelines.

Testing for significant differences

In addition to investigating the accuracy of edge weights and
the stability of the order of centrality, researchers may wish
to know whether a specific edge A–B is significantly larger
than another edge A–C, or whether the centrality of node A
is significantly larger than that of node B. To that end, the
bootstrapped values can be used to test if two edge-weights or
centralities significantly differ from one-another. This can
be done by taking the difference between bootstrap values
of one edge-weight or centrality and another edge-weight or
centrality, and constructing a bootstrapped CI around those
difference scores. This allows for a null-hypothesis test if
the edge-weights or centralities differ from one-another by
checking if zero is in the bootstrapped CI (Chernick, 2011).
We term this test the bootstrapped difference test.

As the bootstraps are functions of complicated estimation
methods, in this case LASSO regularization of partial cor-
relation networks based on polychoric correlation matrices,
we assessed the performance of the bootstrapped differ-
ence test for both edge-weights and centrality indices in two
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simulation studies below. The edge-weight bootstrapped
difference test performs well with Type I error rate close to
the significance level (α), although the test is slightly con-
servative at low sample sizes (i.e., due to edge-weights often
being set to zero, the test has a Type I error rate somewhat
less than α). When comparing two centrality indices, the test
also performs as a valid, albeit somewhat conservative, null-
hypothesis test with Type I error rate close to or less than α.
However, this test does feature a somewhat lower level of
power in rejecting the null-hypothesis when two centralities
do differ from one-another.

A null-hypothesis test, such as the bootstrapped differ-
ence test, can only be used as evidence that two values
differ from one-another (and even then care should be taken
in interpreting its results; e.g., Cohen 1994). Not rejecting
the null-hypothesis, however, does not necessarily constitute
evidence for the null-hypothesis being true (Wagenmak-
ers, 2007). The slightly lower power of the bootstrapped
difference test implies that, at typical sample sizes used
in psychological research, the test will tend to find fewer
significant differences than actually exist at the popula-
tion level. Researchers should therefore not routinely take
nonsignificant centralities as evidence for centralities being
equal to each other, or for the centralities not being accu-
rately estimated. Furthermore, as described below, applying
a correction for multiple testing is not feasible in practice.
As such, we advise care when interpreting the results of
bootstrapped difference tests.

A note on multiple testing The problem of performing
multiple significance tests is well known in statistics. When
one preforms two tests, both at α = 0.05, the probability
of finding at least one false significant result (Type I error)
is higher than 5 %. As a result, when performing a large
number of significance tests, even when the null-hypothesis
is true in all tests one would likely find several signifi-
cant results purely by chance. To this end, researchers often
apply a correction for multiple testing. A common correc-
tion is the ‘Bonferroni correction’ (Bland & Altman, 1995),
in which α is divided by the number of tests. Testing, for
example, differences between all edge-weights of a 20-node
network requires 17,955 tests, leading to a Bonferroni cor-
rected significance level of 0.000003.5 Testing at such a low
significance level is not feasible with the proposed bootstrap
methods, for three reasons:

1. The distribution of such LASSO regularized parame-
ters is far from normal (Pötscher & Leeb, 2009), and
as a result approximate p-values cannot be obtained

5One might instead only test for difference in edges that were esti-
mated to be non-zero with the LASSO. However, doing so still often
leads to a large number of tests.

from the bootstraps. This is particularly important for
extreme significance levels that might be used when one
wants to test using a correction for multiple testing. It
is for this reason that this paper does not mention boot-
strapping p values and only investigates null-hypothesis
tests by using bootstrapped CIs.

2. When using bootstrapped CIs with NB bootstrap sam-
ples, the widest interval that can be constructed is
the interval between the two most extreme bootstrap
values, corresponding to α = 2/NB . With 1,000 boot-
strap samples, this corresponds to α = 0.002. Clearly,
this value is much higher than 0.000003 mentioned
above. Taking the needed number of bootstrap samples
for such small significance levels is computationally
challenging and not feasible in practice.

3. In significance testing there is always interplay of Type
I and Type II error rates: when one goes down, the
other goes up. As such, reducing the Type I error
rate increases the Type II error rate (not rejecting the
null when the alternative hypothesis is true), and thus
reduces statistical power. In the case of α = 0.000003,
even if we could test at this significance level, we would
likely find no significant differences due to the low
statistical power.

As such, Bonferroni corrected difference tests are still a
topic of future research.

Summary

In sum, the non-parametric (resampling rows from the data
with replacement) bootstrap can be used to assess the accu-
racy of network estimation, by investigating the sampling
variability in edge-weights, as well as to test if edge-weights
and centrality indices significantly differ from one-another
using the bootstrapped difference test. Case-dropping sub-
set bootstrap (dropping rows from the data), on the other
hand, can be used to assess the stability of centrality indices,
how well the order of centralities are retained after observ-
ing only a subset of the data. This stability can be quantified
using the CS-coefficient. The R code in the Supplementary
Materials show examples of these methods on the simulated
data in Figs. 1 and 2. As expected from Fig. 1, show-
ing that the true centralities did not differ, bootstrapping
reveals that none of the centrality indices in Fig. 2 signif-
icantly differ from one-another. In addition, node strength
(CS(cor = 0.7) = 0.08), closeness (CS(cor = 0.7) =
0.05) and betweenness (CS(cor = 0.7) = 0.05) were
far below the thresholds that we would consider stable.
Thus, the novel bootstrapping methods proposed and imple-
mented here showed that the differences in centrality indices
presented in Fig. 2 were not interpretable as true differences.
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Tutorial

In this section, we showcase the functionality of the boot-
net package for estimating network structures and assessing
their accuracy. We do so by analyzing a dataset (N =
359) of women suffering from posttraumatic stress disor-
der (PTSD) or sub-threshold PTSD. The bootnet package
includes the bootstrapping methods, CS-coefficient and
bootstrapped difference tests as described above. In addi-
tion, bootnet offers a wide range of plotting methods.
After estimating nonparametric bootstraps, bootnet pro-
duces plots that show the bootstrapped CIs of edge-weights
or which edges and centrality indices significantly differ
from one-another. After estimating subset bootstrap, boot-
net produces plots that show the correlation of centrality
indices under different levels of subsetting (Costenbader &
Valente, 2003). In addition to the correlation plot, bootnet
can be used to plot the average estimated centrality index
for each node under different sampling levels, giving more
detail on the order of centrality under different subsetting
levels.

With bootnet, users can not only perform accuracy and
stability tests, but also flexibly estimate a wide variety of
network models in R. The estimation technique can be spec-
ified as a chain of R commands, taking the data as input
and returning a network as output. In bootnet, this chain
is broken in several phases: data preparation (e.g., corre-
lating or binarizing), model estimation (e.g., glasso) and
network selection. The bootnet package has several default
sets, which can be assigned using the default argument
in several functions. These default sets can be used to easily
specify the most commonly used network estimation proce-
dures. Table 1 gives an overview of the default sets and the
corresponding R functions called.6

Example: post-traumatic stress disorder

To exemplify the usage of bootnet in both estimating
and investigating network structures, we use a dataset of
359 women enrolled in community-based substance abuse
treatment programs across the United States (study title:
Women’s Treatment for Trauma and Substance Use Dis-
orders; study number: NIDA-CTN-0015).7 All participants
met the criteria for either PTSD or sub-threshold PTSD,
according to the DSM-IV-TR (American Psychiatric Asso-
ciation, 2000). Details of the sample, such as inclusion and
exclusion criteria as well as demographic variables, can be
found elsewhere (Hien et al., 2009).We estimate the network

6The notation makes use of notation introduced by the magrittr R
package (Bache & Wickham, 2014).
7https://datashare.nida.nih.gov/study/nida-ctn-0015.

using the 17 PTSD symptoms from the PTSD Symptom
Scale-Self Report (PSS-SR; Foa et al., 1993). Participants
rated the frequency of endorsing these symptoms on a scale
ranging from 0 (not at all) to 3 (at least 4 or 5 times a week).

Network estimation Following the steps in the Supple-
mentary Materials, the data can be loaded into R in a data
frame called Data, which contains the frequency ratings
at the baseline measurement point. We will estimate a
Gaussian graphical model, using the graphical LASSO
in combination with EBIC model selection as described
above (Foygel & Drton, 2010). This procedure requires an
estimate of the variance-covariance matrix and returns a
parsimonious network of partial correlation coefficients.
Since the PTSD symptoms are ordinal, we need to compute
a polychoric correlation matrix as input. We can do so
using the cor auto function from the qgraph package,
which automatically detects ordinal variables and utilizes
the R-package lavaan (Rosseel, 2012) to compute poly-
choric (or, if needed, polyserial and Pearson) correlations.
Next, the EBICglasso function from the qgraph pack-
age can be used to estimate the network structure, which
uses the glasso package for the actual computation (Fried-
man et al., 2014). In bootnet, as can be seen in Table 1,
the "EBICglasso" default set automates this proce-
dure. To estimate the network structure, one can use the
estimateNetwork function:

library("bootnet")
Network <- estimateNetwork(Data,
default = "EBICglasso")

Next, we can plot the network using the plot method:

plot(Network, layout = "spring",
labels = TRUE)

The plot method uses qgraph (Epskamp et al., 2012) to
plot the network. Figure 3 (left panel) shows the resulting
network structure, which is parsimonious due to the LASSO
estimation; the network only has 78 non-zero edges out of
136 possible edges. A description of the node labels can
be seen in Table 2. Especially strong connections emerge
among Node 3 (being jumpy) and Node 4 (being alert),
Node 5 (cut off from people) and Node 11 (interest loss),
and Node 16 (upset when reminded of the trauma) and
Node 17 (upsetting thoughts/images). Other connections are
absent, for instance between Node 7 (irritability) and Node
15 (reliving the trauma); this implies that these symptoms
can be statistically independent when conditioning on all
other symptoms (their partial correlation is zero) or that
there was not sufficient power to detect an edge between
these symptoms.

https://datashare.nida.nih.gov/study/nida-ctn-0015
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Table 1 R chains to estimate network models from data. The default
sets "EBICglasso", "pcor", "huge" and "adalasso" esti-
mate a Gaussian graphical model and the default sets "IsingFit"
and "IsingLL" estimate the Ising model. The notation
package::function indicates that the function after the colons

comes from the package before the colons. Chains are schematically
represented using magrittr chains: Whatever is on the left of %>% is
used as first argument to the function on the right of this operator. Thus,
the first chain corresponding to "EBICglasso" can also be read as
qgraph::EBICglasso(qgraph::cor_auto(Data))

Default set R chain

EBICglasso Data % > % qgraph::cor auto % > % qgraph::EBICglasso

pcor Data % > % qgraph::cor auto % > % corpcor::cor2pcor

IsingFit Data % > % bootnet::binarize % > % IsingFit::IsingFit

IsingLL Data % > % bootnet::binarize % > %

IsingSampler::EstimateIsing(method = ‘‘ll’’)

huge Data % > % as.matrix % > % na.omit % > % huge::huge.npn % > %

huge::huge(method = ‘‘glasso’’) % > %

huge::huge.select(criterion = ‘‘ebic’’)

adalasso Data % > % parcor::adalasso.net

Computing centrality indices To investigate centrality
indices in the network, we can use the centralityPlot
function from the qgraph package:

library("qgraph")
centralityPlot(Network)

The resulting plot is shown in Fig. 3 (right panel). It can be
seen that nodes differ quite substantially in their centrality esti-
mates. In the network, Node 17 (upsetting thoughts/images)
has the highest strength and betweenness and Node 3 (being
jumpy) has the highest closeness. However, without know-
ing the accuracy of the network structure and the stability

of the centrality estimates, we cannot conclude whether
the differences of centrality estimates are interpretable or
not.

Edge-weight accuracy The bootnet function can be
used to perform the bootstrapping methods described
above. The function can be used in the same way as the
estimateNetwork function, or can take the output of
the estimateNetwork function to run the bootstrap
using the same arguments. By default, the nonparametric
bootstrap with 1,000 samples will be used. This can be over-
written using the nBoots argument, which is used below to
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Fig. 3 Estimated network structure of 17 PTSD symptoms (left panel) and the corresponding centrality indices (right panel). Centrality indices
are shown as standardized z-scores. The network structure is a Gaussian graphical model, which is a network of partial correlation coefficients
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Table 2 Node IDs and corresponding symptom names of the 17 PTSD
symptoms

ID Variable

1 Avoid reminds of the trauma

2 Bad dreams about the trauma

3 Being jumpy or easily startled

4 Being over alert

5 Distant or cut off from people

6 Feeling emotionally numb

7 Feeling irritable

8 Feeling plans won’t come true

9 Having trouble concentrating

10 Having trouble sleeping

11 Less interest in activities

12 Not able to remember

13 Not thinking about trauma

14 Physical reactions

15 Reliving the trauma

16 Upset when reminded of trauma

17 Upsetting thoughts or images

obtain more smooth plots.8 The nCores argument can be
used to speed up bootstrapping and use multiple computer
cores (here, eight cores are used):
boot1 <- bootnet(Network, nBoots = 2500,
nCores = 8)

The print method of this object gives an overview of
characteristics of the sample network (e.g., the number of
estimated edges) and tips for further investigation, such as
how to plot the estimated sample network or any of the
bootstrapped networks. The summary method can be used
to create a summary table of certain statistics containing
quantiles of the bootstraps.

The plot method can be used to show the bootstrapped
CIs for estimated edge parameters:

plot(boot1, labels = FALSE,
order = "sample")

Figure 4 shows the resulting plots and reveals sizable
bootstrapped CIs around the estimated edge-weights, indi-
cating that many edge-weights likely do not significantly
differ from one-another. The generally large bootstrapped
CIs imply that interpreting the order of most edges in
the network should be done with care. Of note, the edges
16 (upset when reminded of the trauma)–17 (upsetting

8Using many bootstrap samples, such as the 2,500 used here, might
result in memory problems or long computation time. It is advisable to
first use a small number of samples (e.g., 10) and then try more. The
simulations below show that 1,000 samples may often be sufficient.

thoughts/images), 3 (being jumpy) – 4 (being alert) and 5
(feeling distant) – 11 (loss of interest), are reliably the three
strongest edges since their bootstrapped CIs do not overlap
with the bootstrapped CIs of any other edges.9

Centrality stability We can now investigate the stability
of centrality indices by estimating network models based
on subsets of the data. The case-dropping bootstrap can be
used by using type = "case":

boot2 < - bootnet(Network, nBoots = 2500,
type = "case", nCores = 8)

To plot the stability of centrality under subsetting, the
plot method can again be used:

plot(boot2)

Figure 5 shows the resulting plot: the stability of close-
ness and betweenness drop steeply while the stability of
node strength is better. This stability can be quantified
using the CS-coefficient, which quantifies the maximum
proportion of cases that can be dropped to retain, with 95 %
certainty, a correlation with the original centrality of higher
than (by default) 0.7. This coefficient can be computed
using the corStability function:

corStability(boot2)

The CS-coefficient indicates that betweenness
(CS(cor = 0.7) = 0.05) and (CS(cor = 0.7) = 0.05) close-
ness are not stable under subsetting cases. Node strength
performs better (CS(cor = 0.7) = 0.44), but does not
reach the cutoff of 0.5 from our simulation study required
consider the metric stable. Therefore, we conclude that
the order of node strength is interpretable with some care,
while the orders of betweenness and closeness are not.

Testing for significant differences The differenceTest
function can be used to compare edge-weights and cen-
tralities using the bootstrapped difference test. This makes
use of the non-parametric bootstrap results (here named
boot1) rather than the case-dropping bootstrap results.
For example, the following code tests if Node 3 and Node
17 differ in node strength centrality:

differenceTest(boot1, 3, 17,
"strength")

9As with any CI, non-overlapping CIs indicate two statistics signifi-
cantly differ at the given significance level. The reverse is not true;
statistics with overlapping CIs might still significantly differ.
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edge

−0.2 0.0 0.2 0.4

Fig. 4 Bootstrapped confidence intervals of estimated edge-weights
for the estimated network of 17 PTSD symptoms. The red line indicates the
sample values and the gray area the bootstrapped CIs. Each horizontal
line represents one edge of the network, ordered from the edge with

the highest edge-weight to the edge with the lowest edge-weight. In
the case of ties (for instance, multiple edge-weights were estimated to
be exactly 0), the mean of the bootstrap samples was used in ordering
the edges. The y-axis labels have been removed to avoid cluttering

The results show that these nodes do not differ in node
strength since the bootstrapped CI includes zero (CI:
−0.20, 0.35). The plot method can be used to plot the differ-
ence tests between all pairs of edges and centrality indices.
For example, the following code plots the difference tests
of node strength between all pairs of edge-weights:

plot(boot1, "edge", plot = "difference",
onlyNonZero = TRUE, order = "sample")

In which the plot argument has to be used because the
function normally defaults to plotting bootstrapped CIs for
edge-weights, the onlyNonZero argument sets so that
only edges are shown that are nonzero in the estimated net-
work, and order = "sample" orders the edge-weights
from the most positive to the most negative edge-weight in
the sample network. We can use a similar code for compar-
ing node strength:

plot(boot1, "strength")

In which we did not have to specify the plot argument
as it is set to the "difference" by default when the
statistic is a centrality index.

The resulting plots are presented in Fig. 6. The top panel
shows that many edges cannot be shown to significantly dif-
fer from one-another, except for the previously mentioned

edges 16 (upset when reminded of the trauma) – 17 (upset-
ting thoughts/images), 3 (being jumpy) – 4 (being alert)
and 5 (feeling distant) – 11 (loss of interest), which signif-
icantly differ from most other edges in the network. The
bottom panel shows that most node strengths cannot be
shown to significantly differ from each other. The node with
the largest strength, Node 17, is significantly larger than
almost half the other nodes. Furthermore, Node 7 and Node
10 and also feature node strength that is significantly larger
than some of the other nodes. In this dataset, no significant
differences were found between nodes in both betweenness
and closeness (not shown). For both plots it is important to
note that no correction for multiple testing was applied.

Simulation studies

We conducted three simulation studies to assess the per-
formance of the methods described above. In particular,
we investigated the performance of (1) the CS-coefficient
and the bootstrapped difference test for (2) edge-weights
and (3) centrality indices. All simulation studies use net-
works of 10 nodes. The networks were used as partial
correlation matrices to generate multivariate normal data,
which were subsequently made ordinal with four levels by
drawing random thresholds; we did so because most prior
network papers estimated networks on ordinal data (e.g.,
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Fig. 5 Average correlations between centrality indices of networks sampled with persons dropped and the original sample. Lines indicate the
means and areas indicate the range from the 2.5th quantile to the 97.5th quantile

psychopathological symptom data). We varied sample size
between 100, 250, 500, 1,000, 2,500 and 5,000, and repli-
cated every condition 1,000 times. We estimated Gaussian
graphical models, using the graphical LASSO in combina-
tion with EBIC model selection (Epskamp & Fried, 2016;
Foygel & Drton, 2010), using polychoric correlation matri-
ces as input. Each bootstrap method used 1,000 bootstrap
samples. In addition, we replicated every simulation study
with 5-node and 20-node networks as well, which showed
similar results and were thus not included in this paper to
improve clarity.

CS-coefficients We assessed the CS-coefficient in a simu-
lation study for two cases where: networks where centrality
did not differ between nodes, and networks where central-
ity did differ. We simulated chain networks as shown in
Fig. 1 consisting of 10 nodes, 50 % negative edges and
all edge-weights set to either 0.25 or −0.25. Next, we ran-
domly rewired edges as described by Watts and Strogatz
(1998) with probability 0, 0.1, 0.5 or 1. A rewiring proba-
bility of 0.5 indicates that every edge had a 50 % chance
of being rewired to another node, leading to a different
network structure than the chain graph. This procedure cre-
ates a range of networks, ranging from chain graphs in
which all centralities are equal (rewiring probability = 0)
to random graphs in which all centralities may be different
(rewiring probability = 1). Every condition (rewiring proba-
bility × sample size) was replicated 1,000 times, leading to

24,000 simulated datasets. On each of these datasets, case-
dropping bootstrap was performed and the CS-coefficient
was computed. Case-dropping bootstrap used 5,000 boot-
strap samples and tested 25 different sampling levels (rather
than the default 1,000 bootstrap samples and 10 different
sampling levels) to estimate the CS-coefficient with more
accuracy. Figure 7 shows the results, showing that the CS-
coefficient remains low in networks in which centrality does
not differ and rises as a function of sample size in networks
in which centralities do differ. It can be seen that under a
model in which centralities do not differ the CS-coefficient
remains stable as sample size increases and stays mostly
below .5, and roughly 75 % stays below 0.25. Therefore,
to interpret centrality differences the CS-coefficient should
not be below 0.25, and preferably above 0.5.

Edge-weight bootstrapped difference test We ran a sec-
ond simulation study to assess the performance of the boot-
strapped difference test for edge-weights. In this simulation
study, chain networks were constructed consisting of 10
nodes in which all edge-weights were set to 0.3. Sample size
was again varied between 100, 250, 500, 1,000, 2,500 and
5,000 and each condition was again replicated 1,000 times,
leading to 6,000 total simulated datasets. Data were made
ordinal and regularized partial correlation networks were
estimated in the same manner as in the previous simula-
tion studies. We used the default of 1,000 bootstrap samples
to compare edges that were nonzero in the true network
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Fig. 6 Bootstrapped difference tests (α = 0.05) between edge-
weights that were non-zero in the estimated network (above) and node
strength of the 17 PTSD symptoms (below).Gray boxes indicate nodes
or edges that do not differ significantly from one-another and black

boxes represent nodes or edges that do differ significantly from one-
another. Colored boxes in the edge-weight plot correspond to the color
of the edge in Fig. 3, and white boxes in the centrality plot show the
value of node strength

(thus, edges with a weight of 0.3 that were not different
from one-another), and investigated the rejection rate under
different levels of α: 0.05, 0.01 and 0.002 (the minimum α

level when using 1,000 bootstrap samples). Figure 8 shows that

rejection rate converged on the expected rejection rate with
higher samples, and was lower than the expected rejection rate
in the low sample condition of N = 100—a result of the
LASSOpullingmany edge-weights to zero in low sample sizes.
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Fig. 7 Simulation results showing the CS-coefficient of 24,000 sim-
ulated datasets. Datasets were generated using chain networks (partial
correlations) of 10 nodes with edge-weights set to 0.25 or −0.25.
Edges were randomly rewired to obtain a range from networks rang-
ing from networks in which all centralities are equal to networks in
which all centralities differ. The CS-coefficient quantifies the maximum

proportion of cases that can be dropped at random to retain, with 95 %
certainty, a correlation of at least 0.7 with the centralities of the original
network. Boxplots show the distribution of CS-coefficients obtained
in the simulations. For example, plots on top indicate that the CS-
coefficient mostly stays below 0.25 when centralities do not differ
from one-another (chain graph as shown in Fig. 1)

Centrality bootstrapped difference test We conducted a
third simulation study to assess the performance of the boot-
strapped difference test for centrality indices. The design
was the same as the first simulation study, leading to 24,000
total simulated datasets. We performed the bootstrapped dif-
ference test, using 1,000 bootstrap samples and α = 0.05,
to all pairs of nodes in all networks and computed the
rate of rejecting the null-hypothesis of centralities being
equal. Figure 9 shows the results of this simulation study.
It can be seen that the average rate of rejecting the null-
hypothesis of two centrality indices being equal under a
chain-network such as shown in Fig. 1 stays below 0.05 at

all sample sizes for all centrality indices. As such, check-
ing if zero is in the bootstrapped CI on differences between
centralities is a valid null-hypothesis test. Figure 9, how-
ever, also shows that the rejection rate often is below 0.05,
leading to a reduced power in the test. Thus, finding true
differences in centrality might require a larger sample size.
When centralities differ (rewiring probability > 0), power
to detect differences goes up as a function of sample size.
Unreported simulation studies showed that using Pearson
or Spearman correlations on ordinal data using this method
leads to an inflated Type-I error rate. Our simulations thus
imply that bootstrapped difference test for centrality indices
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Fig. 8 Simulation results showing the rejection rate of the boot-
strapped difference test for edge-weights on 6,000 simulated datasets.
Datasets were generated using chain networks (partial correlations) of ten
nodes with edge-weights set to 0.3. Only networks that were nonzero
in the true network were compared to one-another. Lines indicate the

proportion of times that two random edge-weights were significantly
different (i.e., the null-hypothesis was rejected) and their CI (plus and
minus 1.96 times the standard error). Solid horizontal lines indicate
the intended significance level and horizontal dashed line the expected
significance level. The y-axis is drawn using a logarithmic scale

for ordinal data should use polychoric correlations as input
to the graphical LASSO.

Discussion

In this paper, we have summarized the state-of-the-art in
psychometric network modeling, provided a rationale for
investigating how susceptible estimated psychological net-
works are to sampling variation, and described several
methods that can be applied after estimating a network
structure to check the accuracy and stability of the results.
We proposed to perform these checks in three steps: (A)
assess the accuracy of estimated edge-weights, (B) assess
the stability of centrality indices after subsetting the data,
and (C) test if edge-weights and centralities differ from one-
another. Bootstrapping procedures can be used to perform
these steps. While bootstrapping edge-weights is straight-
forward, we also introduced two new statistical methods:
the correlation stability coefficient (CS-coefficient) and the
bootstrapped difference test for edge-weights and central-
ity indices to aid in steps 2 and 3, respectively. To help
researchers conduct these analyses, we have developed the
freely available R package bootnet, which acts as a gener-
alized framework for estimating network models as well as
performs the accuracy tests outlined in this paper. It is of note
that, while we demonstrate the functionality of bootnet in

this tutorial using a Gaussian graphical model, the package
can be used for any estimation technique in R that estimates
an undirected network (such as the Ising model with binary
variables).

Empirical example results The accuracy analysis of a 17-
node symptom network of 359 women with (subthreshold)
PTSD showed a network that was susceptible to sampling
variation. First, the bootstrapped confidence intervals of the
majority of edge-weights were large. Second, we assessed
the stability of centrality indices under dropping people
from the dataset, which showed that only node strength
centrality was moderately stable; betweenness and close-
ness centrality were not. This means that the order of node
strength centrality was somewhat interpretable, although
such interpretation should be done with care. Finally, boot-
strapped difference tests at a significance level of 0.05
indicated that only in investigating node strength could
statistical differences be detected between centralities of
nodes, and only three edge-weights were shown to be
significantly higher than most other edges in the network.

Limitations and future directions

Power-analysis in psychological networks Overall, we
see that networks with increasing sample size are estimated
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Fig. 9 Simulation results showing the rejection rate of the boot-
strapped difference test for centrality indices. Datasets were generated
using the same design as in Fig. 7. Lines indicate the proportion of

times that two random centralities were significantly different (i.e., the
null-hypothesis was rejected at α = 0.05)

more accurately. This makes it easier to detect differences
between centrality estimates, and also increases the sta-
bility of the order of centrality estimates. But how many
observations are needed to estimate a reasonably stable
network? This important question usually referred to as
power-analysis in other fields of statistics (Cohen, 1977)
is largely unanswered for psychological networks. When
a reasonable prior guess of the network structure is avail-
able, a researcher might opt to use the parametric bootstrap,
which has also been implemented in bootnet, to investi-
gate the expected accuracy of edge-weights and centrality
indices under different sample sizes. However, as the field
of psychological networks is still young, such guesses are
currently hard to come by. As more network research will be
done in psychology, more knowledge will become available
on graph structure and edge-weights that can be expected
in various fields of psychology. As such, power calculations
are a topic for future research and are beyond the scope of
the current paper.

Future directions While working on this project, two new
research questions emerged: is it possible to form an unbi-
ased estimator for centrality indices in partial correlation
networks, and consequently, how should true 95% confi-
dence intervals around centrality indices be constructed? As
our example highlighted, centrality indices can be highly

unstable due to sampling variation, and the estimated sam-
pling distribution of centrality indices can be severely
biased. At present, we have no definite answer to these
pressing questions that we discuss in some more detail in the
Supplementary Materials. In addition, constructing boot-
strapped CIs on very low significance levels is not feasible
with a limited number of bootstrap samples, and approx-
imating p-values on especially networks estimated using
regularization is problematic. As a result, performing dif-
ference tests while controlling for multiple testing is still a
topic of future research. Given the current emergence of net-
work modeling in psychology, remediating these questions
should have high priority.

Related research questions We only focused on accu-
racy analysis of cross-sectional network models. Assessing
variability on longitudinal and multi-level models is more
complicated and beyond the scope of current paper; it is
also not implemented in bootnet as of yet. We refer the
reader to Bringmann et al. (2015) for a demonstration on
how confidence intervals can be obtained in a longitudi-
nal multi-level setting. We also want to point out that the
results obtained here may be idiosyncratic to the particular
data used. In addition, it is important to note that the boot-
strapped edge-weights should not be used as a method for
comparing networks based on different groups, (e.g., com-
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paring the bootstrapped CI of an edge in one network to
the bootstrapped CI of the same edge in another network)
for which a statistical test is being developed.10 Finally,
we wish to point out promising research on obtaining exact
p values and confidence intervals based on the results of
LASSO regularized analyses (see Hastie et al. (2015), for an
overview), which may in the future lead to a lesser need to
rely on bootstrapping methods.

Conclusions

In addition to providing a framework for network estima-
tion as well as performing the accuracy tests proposed in
this paper, bootnet offers more functionality to further check
the accuracy and stability of results that were beyond the
scope of this paper, such as the parametric bootstrap, node-
dropping bootstrap (Costenbader and Valente, 2003) and
plots of centrality indices of each node under different lev-
els of subsetting. Future development of bootnet will be
aimed to implement functionality for a broader range of
network models, and we encourage readers to submit any
such ideas or feedback to the Github Repository.11 Network
accuracy has been a blind spot in psychological network
analysis, and the authors are aware of only one prior paper
that has examined network accuracy (Fried et al., 2016),
which used an earlier version of bootnet than the version
described here. Further remediating the blind spot of net-
work accuracy is of utmost importance if network analysis
is to be added as a full-fledged methodology to the toolbox
of the psychological researcher.
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