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As evidenced by our exchange with Bader and Moshagen (2022), the degree to which model fit indi-
ces can and should be used for the purpose of model selection remains a contentious topic. Here, we
make three core points. First, we discuss the common misconception about fit statistics’ abilities to
identify the “best model,” arguing that mechanical application of model fit indices contributes to
faulty inferences in the field of quantitative psychopathology. We illustrate the consequences of this
practice through examples in the literature. Second, we highlight the parsimony-adjacent concept of
fitting propensity, which is not accounted for by commonly used fit statistics. Finally, we present
specific strategies to overcome interpretative bias and increase generalizability of study results and
stress the importance of carefully balancing substantive and statistical criteria in model selection
scenarios.

General Scientific Summary
In this piece, we review the limitations of model fit indices, which limit the validity of inferences
that are based on them. In doing so, we encourage psychopathology researchers to think about
model selection more broadly, and to approach model fit assessments more cautiously.
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Motivated by the trend of using close fit as decisive evidence of
structural fidelity in the p-factor literature, our target article
extended prior simulation work on cognitive abilities (Morgan
et al., 2015; Murray & Johnson, 2013) to psychopathology
(Greene et al., 2019). The relative fit of the confirmatory correlated
factor and bifactor models to the simulated data varied as a func-
tion of the presence or absence and magnitude or placement of
unmodeled complexities in the data-generating model. When the

population model did not contain unmodeled complexities, relative
and information-theoretic fit indices that penalize for the number
of free parameters (hereafter referred to as “parsimony-adjusted fit
indices”) tended to favor the fitted model with fewer parameters—
the pure correlated factors model—because all else was equal
between the fitted models (i.e., identical model-implied covariance
structures). When the population model was more complex, the
bifactor model was systematically better at accommodating the
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data than the correlated factor model, although the latter was sub-
stantively correct. This is but one source of spurious confidence in
the bifactor model of psychopathology.
Bader and Moshagen (2022) contextualize our findings by

describing the impact of unmodeled complexities on the behavior
of specific model fit statistics. They conclude that model fit indices
are not characterized by probifactor bias because “they performed
as expected—they identified the model that was (contingent on its
parsimony) most closely aligned with the empirical data” (p. 4).
Here, we elaborate on one broad point of disagreement: the mathe-
matical correctness of omnibus fit statistics does not preclude pro-
bifactor interpretative bias, which is the tendency for researchers
to be misled and, in turn, prone to make problematic inferences
about a given model’s scientific value and theoretical plausibility.
In the online supplemental materials, we also address the authors’
potentially misleading discussion of the nested versus equivalent
relations between our population models.
Because much of our disagreement with Bader and Moshagen

surrounds the term “bias,” we offer our two-part definition: (a) fit
statistics have a predetermined preference for the confirmatory
bifactor model over nested alternatives when they are fit to data
containing unmodeled complexities of adequate size (Mansolf &
Reise, 2017), which are largely unknown in real data and may be
extensive; and (b) the validity of inferences about the “best” model
is questionable when they are based on the confirmatory bifactor
model’s superior fit to the data relative to competing nested mod-
els due to its high fitting propensity (Bonifay & Cai, 2017; Falk &
Muthukrishna, 2021).

Parsimony Is More Than the Number of Free
Parameters

One specific point of contention we have with Bader and Mosha-
gen’s argument concerns statements that risk conflating “predictabil-
ity” with “validity,” such as “valid inferences regarding the structural
representation of psychopathology require an unbiased assessment of
the correspondence between competing theoretical models and em-
pirical data (i.e., goodness of fit)” (p. 3). This treatment of parsimony
is incomplete, because it does not address an adjacent concept known
as fitting propensity, the ability to accommodate a wide range of data
patterns (Bonifay, 2021; Preacher, 2006).
We argue that the validity of fit-based inferences is debatable,

given that they are limited by the elements in fit indices’mathematical
formulae. Goodness-of-fit is influenced by two sets of model features,
(1) parametric complexity, the number of freely estimated parameters;
and (2) structural complexity, the model’s functional form, or the
placement and flexibility of free parameters (Markon, 2019; Preacher,
2006; Raykov & Marcoulides, 1999).1 The distinction between para-
metric and structural complexity is important because two models
with the same parametric complexity (i.e., the same degrees of free-
dom) can have different functional forms and, thus, different fitting
propensities. Consider a single-factor model and an orthogonal two-
factor model (see Figure 1). The former fits well to numerous types of
data, whereas the latter only fits well to data generated by two uncor-
related factors with the pattern of loadings closely aligned. Focusing
on model fit is misleading because parsimony-adjusted fit indices pe-
nalize parametric complexity, not structural complexity. In fact, par-
simony-adjusted fit indices favor structural complexity: “in a nested
model selection setting, if each added parameter actually improves

the model fit, both AIC and BIC ultimately select the most complex
model” (Huang, 2017, p. 413). Thus, goodness-of-fit (F0) improves
as a function of both parametric and structural complexity.

The misspecified bifactor model’s advantage also increases as
information accumulates through increased sample size (MacCal-
lum, 2003; Marsh et al., 2004; Preacher, 2006), whereas the
imperfectly specified correlated factor model will show greater
misfit (i.e., higher F0 values). Bader and Moshagen frame this
moderating effect of sample size as a positive improvement for the
performance of parsimony-adjusted fit indices, but we interpret
this effect differently. The bifactor model is parametrically and
structurally complex, so it is mistaken as a “factually” better
model by fit statistics that have a preference for complexity as
sample size increases. Therefore, while Bader and Moshagen are
certainly correct that the bifactor model was more closely aligned
with the data—as judged by the maximum likelihood discrepancy
function (F0)—it has the undesirable tendency to overfit data
regardless of whether the population model has a bifactor structure
(Bonifay & Cai, 2017; Markon, 2019). Thus, the bifactor model
cannot readily distinguish between arbitrary noise and meaningful
patterns of interest. It easily accommodates both (Bonifay & Cai,
2017; Reise et al., 2016; Watts et al., 2020).

We encourage readers to approach global fit assessments cau-
tiously, despite Bader and Moshagen’s emphasis on results derived
from the discrepancy function (F0): “the only reasonable statistical
approach to choose the best model among a set of factually wrong
candidate models is to base this decision on the degree of actual
discrepancy, as one would clearly favor the model that is most
closely aligned with the data—even if it might be wrong in some
respects—over a model that is farther off” (p. 9).2 While it is help-
ful to show that the data with unmolded complexities were less
discrepant with the bifactor model (i.e., smaller F0 values), we
believe that Bader and Moshagen overstate the power of this
approach. In light of the bifactor model’s fitting propensity (Boni-
fay & Cai, 2017; Mansolf & Reise, 2017; Reise et al., 2016), its
closer alignment with our simulated data are insufficient support
for the claim that (a) parsimony-adjusted fit indices are able to
identify the “best model” or (b) that the pure bifactor structure

1 Parsimonious models constrain possible outcomes (Popper, 1959),
which limits the number of datasets that they can fit well (Preacher, 2006;
Roberts & Pashler, 2000). This view of parsimony illustrates why the
higher-order model with three lower-order factors is more restrictive than
the bifactor model: the unique constraints implied by the higher-order
model results in less flexible parameters (i.e., factor loadings), whereas the
flexible bifactor can fit a wider range of data, “regardless of truth or
plausibility” (e.g., data that has no structure; Markon, 2019). Fit-based
support for the bifactor model is weak, because fit indices cannot account
for its higher flexibility compared with nested alternatives (i.e., similar to
an exploratory factor model; Bonifay & Cai, 2017; Greene et al., 2022).
Highly flexible parameters are characterized by “accommodational
plasticity,” leading to “predictive impotence” or the tendency to make
inaccurate predictions due to overfitting (Hitchcock & Sober, 2004, p. 22).

2 Another possible response to this point hinges on the fact that F0 does
not adjust for lack of parsimony. For instance, an exploratory factor model
with k-1 factors (10 factors in this case) would consistently outperform
every competing model herein on F0, but it would not provide any new
insights. The model would simply reconstruct the data without making it
more interpretable. While traditional bifactor models are not as
counterproductive as this example, they suffer from the same basic
problem.
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provided the “best description of the data” compared with the
other models. “Accommodation” is not the same as “description.”
The bifactor model only reconstructed the data better, which is not
the same as recovering the true structure of our data (i.e., the true
organization of latent variables).

Consequences of Probifactor Interpretative Bias

Retaining a model on the sole basis of superior fit blurs the dis-
tinctions between “optimal” and “best fitting” (Marsh et al., 2004;
Roberts & Pashler, 2000; Sellbom & Tellegen, 2019). There are at
least three important consequences of this practice, which we will
situate within the context of research on the general factor of psy-
chopathology (p-factor).

Difficulty Synthesizing Results

Models with high fitting propensity are less likely to generalize
because they overfit data, meaning they accommodate unmodeled
complexities in a correlation matrix that are likely to be sample-

and study-specific (Bonifay, 2021). Models that overaccommodate
noise or error often fit well due to the estimation of unnecessary
parameters, which reduces measurement precision (e.g., low spe-
cific factor loadings; Hancock & Mueller, 2011; McNeish et al.,
2018), verisimilitude (plausibility), and replicability (usefulness;
Schmitt et al., 2018).

A natural consequence of this problem is that it is difficult to syn-
thesize results from studies on bifactor models of psychopathology.
Substantive interpretations of the bifactor model vary widely across
studies with different samples, measures of similar constructs, and
factor analytic methods (Greene et al., 2022; Watts et al., 2020).
Indeed, the general factor’s meaning routinely shifts across studies,
and specific factors are often ill-defined (i.e., unreliable and incon-
sistent constructs; Watts et al., 2020). Moreover, Forbes and col-
leagues (Forbes et al., 2021) found that confirmatory bifactor
models of psychopathology reveal their flexibility to fit any data
through their imprecise parameter estimates (i.e., large standard
errors) and unreliable specific factors (see also Watts et al., 2020).
These trends demonstrate the bifactor’s ability to accommodate
components of error (e.g., correlated residuals, disturbance factors

Figure 1
Two Models With Different Functional Forms, But the Same Degrees of Freedom

Note. Both models had 44 degrees of freedom. Model fit statistics for the single-factor model: root mean square error of approximation (RMSEA) = .049,
comparative fit index (CFI) = .871, Tucker-Lewis index (TLI) = .839. Model fit statistics for the orthogonal two-factor model: RMSEA = .064, CFI = .782,
TLI = .728. Parameter values were derived from the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC) dataset using weighted
least square mean and variance adjusted (WLSMV) estimation.
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or variances) that are included in the latent factor models being
tested (Beauducel, 2013; Tomarken & Waller, 2003).

Unstable and Uninterpretable Latent Factors

Another consequence of solely relying on model fit to adjudi-
cate models is that a model with high fitting propensity can fit well
even if it is incompatible with the conceptual model. In bifactor
models, incompatibilities often arise through weak specific factors
that not statistically or conceptually isomorphic with their intended
constructs—typically factors in the correlated factor model. Weak
specific factors in bifactor models are often caused by the presence
of pure indicators of the general factor (loadings that approach 1;
Robertson, 2019), which leave no remaining variance to be
explained by the specific factor. In turn, pure indicators define the
general factor and convert it into an unintentional approximation
of narrower content domains in the correlated factors model
(Burns et al., 2020; Greene et al., 2022; Heinrich et al., 2021).
Seminal studies of the general factor of psychopathology

selected optimal models of the structure of psychopathology with
reference to model fit that included pure indicators of the general
factor (Lahey et al., 2012) and specific factor collapse (Caspi
et al., 2014).3 Thus, latent factors in bifactor models of psychopa-
thology were likely labeled prematurely given that these general
factors were unplanned proxies for distress and thought disorder,
respectively. Other interpretative consequences also followed,
such as largely tautological inferences (i.e., the p-factor reflecting
disordered thought; Caspi et al., 2014) that went on to inspire
many subsequent studies. Thus, a potentially misguided choice
between competing models based on fit indices can change a sin-
gle study’s discussion section and even shape the discourse within
the field (Caspi & Moffitt, 2018).

Reifying Latent Factors

Confirmatory factor analysis contributes to the hyper-focus on
model fit and the subsequent urge to reify latent factors, which
conflates statistical and theoretical constructs. Statistical general
factors are conflated with the p-factor as a substantive theoretical
construct (Fried, 2020; Watts et al., 2020). As a statistical con-
struct, a general factor simply summarizes the shared variance
among the model’s observed indicators—sometimes contributing
little more than a sum score (Fried et al., 2021)—and may over-
simplify multidimensional data (Forbes et al., 2021). As a theoreti-
cal construct, the p-factor’s many faces are due to the derivation
of post hoc theories by means of factor analysis (Greene et al.,
2022). The p-factor literature parallels the long history of cri-
tiques of Spearman’s theory of general intelligence: what is
“general” to one set of variables rarely translates to another (Cat-
tell, 1952; Horn & McArdle, 2007). Thus, numerous, potentially
sample-specific, p-factor theories have been developed (for a
review of competing p-factor definitions see Caspi & Moffitt,
2018; Smith et al., 2020). Systematizing measurement across
studies and placing greater emphasis on replicating patterns of
parameters, will improve generalizability and aid in the develop-
ment of trustworthy constructs and theories.

Overcoming Interpretative Bias

It is imperative to carefully balance both statistical and concep-
tual justifications for preferring one model over another. The sub-
jective nature of conducting factor analysis can interfere with this
balance, though there are well-established guidelines for making
logically, theoretically, clinically, and statistically informed deter-
minations about the relative quality of models. In Table 1, we list
recommended practices for addressing probifactor interpretative
bias in applied psychopathology modeling scenarios, which threat-
ens valid inference (Marsh et al., 2004; Tomarken & Waller,
2003, 2005). Even if a model meets each of these criteria,
acknowledging the imperfection of all models is vital for under-
standing and testing latent structures (MacCallum, 2003).

Likewise, statistical and conceptual criteria require greater spec-
ificity because neither is useful absent a proper theory. When con-
structing a confirmatory model, researchers should explicitly state
what types of evidence would support or refute their model/theory,
and what evidence might rule out competing models (Fried, 2020;
Watts et al., 2020). For instance, sensitivity analyses are useful for
determining whether general factors of psychopathology are truly
general. If so, they should be indifferent to their indicators, or con-
sistently defined no matter which subset of indicators are included
in the model (i.e., indicator invariance; Reise, 2012). To test for in-
dicator invariance, Watts and colleagues (Watts et al., 2020)
extracted bifactor models of psychopathology and dropped one of
15 indicators from the general factor, one at a time. They found
poor congruence across the resulting general factors despite only
dropping single indicators (convergent rs ranged from �.9 to .9).
Thus, quantifications of generalizability (AIC/BIC [Akaike’s in-
formation criterion/Bayesian information criterion]) are inad-
equate assessments of the assumption that a chosen structural
model can withstand minor changes to a variable set, which is crit-
ical for defending a bifactor model’s validity and reliability.

Another common practice is to disregard fit when adjudicating
between models, selecting one because it is most “interpretable.”
Without a clear definition of “interpretability,” this is akin to pro-
viding no justification at all. Instead, one might construct a formal
or computational model that closely follows a theory, simulate
data from that model, compare the simulated (i.e., theory-implied)
data to real data, and then update the theory and the corresponding
formal model based on discrepancies between the two data sets
(Borsboom et al., 2021; Robinaugh et al., 2021).

Lastly, a critical flaw of many simulation studies, including
ours, is that data are often generated from a model with perfect, or
near perfect, simple structure. This is unrealistic, if not impossible,
in applied settings, which limits ecological validity. Simple struc-
ture population models are unrealistic proxies for real-world psy-
chopathology data-generating mechanisms. In fact, all models will
always misfit real data; they are imperfect representations of the
complex phenomena we seek to understand. Because the assump-
tion that a latent factor model holds exactly in the population is
untenable, we must test hypotheses using data that cannot be

3 The collapse of the thought disorder specific factor in the Caspi et al.
(2014) model resulted in an early example of the bifactor S-1 model, which
has been proposed as one solution to some of the limitations to symmetrical
bifactor models (Burns et al., 2020; Eid, 2020; Eid et al., 2017; Heinrich
et al., 2021).
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Table 1
Comparable Aspects of Model Quality

General
Are analytic goals aligned with a general factor model’s
assumption?

� Orthogonalized bifactor applications are best suited for item-level analysis to assess what
indicators have in common, while higher-order models assess what latent factors have in
common (Decker, 2021)

� If a higher-order model’s second-order factor is only meaningful in the context of their
associations with lower-order factors, a bifactor model should be avoided in nested model
comparisons.

How interpretable is my latent factor model? � Substantive interpretability is judged by the placement, magnitude, and direction of values
for factor loadings and factor intercorrelations, which should be aligned with theoretical
expectations (Eid, 2020; Watts et al., 2020).

Are the intended constructs adequately defined? � Latent constructs are well defined when the set of observed variables adequately describes
the hypothesized latent factor’s features (Clark & Watson, 2019).

Reliability of latent factors
How well do latent factors capture systematic sources of
variance?

� Model-based reliability indices characterize the degree to which a latent factor captures a
meaningful amount of systematic variance (Rodriguez et al., 2016a, 2016b).

� The magnitudes of standard errors for factor loadings are an indication of the precision of
these parameters and should be compared across models (Waldman et al., 2017).

Paradoxical results between model fit and model-based
reliability indices?

� Models with high measurement quality tend to fit worse than those with low measurement
quality (Hancock & Mueller, 2011).

Dimensionality
Does a set of indicators reflect a unidimensional or multidi-
mensional construct?

� Bifactor model-based reliability coefficients may be used to quantify the average parameter
bias that is introduced when a single factor model it applied to data with some multidimen-
sionality (Reise et al., 2013)

� Evaluate whether specific factors have incremental validity in predicting important external
criteria over and above the general factor (Ferrando & Lorenzo-Seva, 2019).

Spurious support for construct’s dimensionality? � Support for unidimensionality may increase as a function of the number of cases without a
diagnosis, or as a function of indicator skewness (Watts et al., 2021).

� The bifactor model can arise in the presence of population heterogeneity (Raykov et al.,
2019).

Overfitting
Are there large discrepancies between results derived from
exploratory and confirmatory methods?

� A strong test of the validity of a confirmatory model is to examine whether it is detected
using exploratory methods (Greene et al., 2022).

How generalizable is a well-fitting model? � Models should be fit to multiple datasets as standard tests of whether they replicate out of-
sample. This can be done by freezing model parameters from “discovery” to “replication”
sample (also see Hitchcock & Sober, 2004; Preacher, 2006).

Misuse of modification indices. � Added parameters, including correlated residuals, may not generalize across samples
(MacCallum et al., 1992). The same applies to parameters that are dropped (e.g., a general
factor loading, a specific factor).

How falsifiable is a well-fitting model? � Bayes Factors imposes an Occam’s razor criterion that balances fit to the data and model
complexity, which allows for an accounting of differences in fitting propensity that goes
beyond the number of free parameters (Mulder, 2014).a

� A better test of model fit is to fit that same model to random data, and to see if it fits well
regardless of the data (ockhamSEM package in R, Falk & Muthukrishna, 2021; see also
Bonifay & Cai, 2017).

Global fit
Global fit indices assess overall fit to the data. � Global fit provides no information about the presence/absence of model misspecifications,

nor the adequacy of a model’s structure (Hayduk, 2014a, 2014b).
A well-fitting model can be misspecified. � Causal processes may be misspecified, such as relations between latent variables (Raykov,

2000).
� The chi-square test of exact fit and other common fit indices are often insufficiently sensi-
tive to detect model misspecifications.

A poor-fitting but correctly specified model? � Model fit can decrease due to minor discrepancies between the observed and implied co-
variance matrices (Browne et al., 2002).

Local fit
Model misspecifications? � Attend to individual model parameters (Tomarken & Waller, 2003, 2005).
Diagnostic investigations of local misfit? � Inspect residual output (Maydeu-Olivares, 2017; Tomarken & Waller, 2003), including

individual residual cases, which may help adjudicate equivalent models (Raykov & Penev,
2014).

� Nonsensical individual response patterns may be easily masked by overly complex models
(Reise et al., 2016).

a While this approach is being applied in SEM contexts that pertain to models with inequality constraints, it is not clear whether the current state of the art
is such that this overall approach can be applied to the specific nested model comparisons described here.
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perfectly accommodated by any fitted model (see Cudeck &
Browne, 1992; Montoya & Edwards, 2021). Researchers should
also consider population structures that are not latent factor models
to explore degrees of misfit for common factor models and assess
the validity of factor model results.
Additional simulation studies are needed to probe psychopathol-

ogy structures that feature greater numbers of factors and indicator
variables, as well as other outcomes like confidence interval cover-
age and distributions of factor loadings, to overcome the limita-
tions posed by the nested models investigated in our study.
Recommended cut-offs for model fit indices are not fixed, but con-
text-dependent (e.g., type of misspecification, estimation method,
factor loading magnitude, model complexity, and strength of asso-
ciations between observed variables, etc.; McNeish & Wolf, 2021;
Xia & Yang, 2019). In the context of quantitative nosology
research, the conditions where fit index values might be less likely
to identify a good-fitting model remain unclear.

Conclusion

Evaluating and retaining models solely based on good model fit
does not qualify as model selection. Instead, model selection is
much broader: it is “the practice of evaluating theory-implied
models relative to one another rather than to a fixed criterion”
(Preacher, 2006, p. 254), with the aim of identifying the model
that best balances conflicting goals—generalizability, plausibility,
parsimony, and fidelity to the data (Myung et al., 2000; Pitt et al.,
2002). Model selection is complex because (a) interpreting and
defending a chosen model is a subjective practice (Browne &
Cudeck, 1993; Cudeck & Henly, 1991; Marsh et al., 2004) and (b)
as one prioritizes one goal over all others, there is an increased
likelihood that the chosen model will not be the same one that best
aligns with all goals (Montoya & Edwards, 2021; Preacher, 2006;
Preacher et al., 2013). In fact, as we demonstrated here, prioritiz-
ing model fit comes with critical limitations. Moving forward, to
improve the reliability and validity of psychopathology classifica-
tion, we recommend that researchers prioritize plausible models
that directly inform specific hypotheses, fit the data reasonably
well, reliably capture the construct(s) of interest, and have lower
fit propensity. Doing so will enhance usefulness—model replica-
bility, construct validity, and research synthesis.
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