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Abstract
Structural models of psychopathology provide dimensional alternatives to traditional categorical
classification systems. Competing models, such as the bifactor and correlated factors models, are
typically compared via statistical indices to assess how well each model fits the same data. However,
simulation studies have found evidence for pro-bifactor fit index bias in several psychological research
domains. The present study sought to extend this research to models of psychopathology, wherein the
bifactor model has received much attention, but its susceptibility to bias is not well characterized. We
used Monte Carlo simulations to examine how various model misspecifications produced fit index bias
for two commonly used estimators, WLSMV and MLR. We simulated binary indicators to represent
psychiatric diagnoses and positively skewed continuous indicators to represent symptom counts.
Across combinations of estimators, indicator distributions, and misspecifications, complex patterns of
bias emerged, with fit indices more often than not failing to correctly identify the correlated factors
model as the data-generating model. No fit index emerged as reliably unbiased across all
misspecification scenarios. Although, tests of model equivalence indicated that in one instance fit
indices were not biased—they favored the bifactor model, albeit not unfairly. Overall, results suggest
that comparisons of bifactor models to alternatives using fit indices may be misleading and call into
question the evidentiary meaning of previous studies that identified the bifactor model as superior
based on fit. We highlight the importance of comparing models based on substantive interpretability
and their utility for addressing study aims, the methodological significance of model equivalence, as

well as the need for implementation of statistical metrics that evaluate model quality.

Keywords: factor analysis, bifactor model, fit index bias, model evaluation, Monte Carlo simulation
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General Scientific Summary
Latent variable models of psychopathology provide dimensional alternatives to traditional categorical
classification systems (e.g., DSM-5 & ICD-11), with the two most popular being the bifactor and
correlated factors models. These competing structural models of psychopathology are often compared
via statistical indices to assess how well each model fits the same data. The results of our simulation
study suggest that bifactor models are often erroneously favored over correlated factor models when
the simulated data were generated by a correlated factors model with minor misspecifications. Findings
from tests of model equivalence also clarified the conditions under which fit indices' favoring of the
bifactor model was characterized by bias. This calls into question the common practice of relying on

common fit statistics when comparing structural models of psychopathology.
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Are Fit Indices Used to Test Psychopathology Structure Biased? A Simulation Study

Current mental disorder classification systems (e.g., DSM-5; American Psychiatric Association,
2013) have significant limitations as organizational frameworks for clinical research and intervention
efforts. For instance, these taxonomies postulate that mental disorders are independent, categorical
entities. However, these diagnostic categories exhibit markedly heterogeneous presentations within
individuals (Olbert, Gala, & Tupler, 2014), have poor reliability (e.g., Fried et al., 2016), and display
high rates of comorbidity (for reviews of these issues see Krueger & Markon, 2006; Trull & Durrett,
2005). Such issues point to a notable mismatch between the model (DSM diagnoses) and the data
(signs and symptoms as they manifest in patients; Kotov et al., 2017; Krueger & Eaton, 2015), which
highlights the importance of investigating structural conceptualizations of mental disorders (Krueger,
1999; Loevinger, 1957; Meehl, 2001, 2004).

Attempts to address these issues have led to the proliferation of new quantitative approaches for
conceptualizing psychopathology in a data-driven way, which have highlighted a set of core
transdiagnostic dimensions. For instance, studies have found robust evidence for two major
transdiagnostic factors, internalizing (accounting for associations among mood and anxiety disorders)
and externalizing (accounting for associations among disorders of antisociality, impulsivity, substance
use, etc.) (Eaton et al., 2012; Eaton, Krueger, & Oltmanns, 2011; Forbush & Watson, 2013; Kramer,
Krueger, & Hicks, 2008; Krueger, 1999), as well as the bifurcation of the internalizing factor into
distress and fear subfactors (see Figure 1; Eaton et al., 2013; Krueger, 1999; Slade & Watson, 2006;
Watson, 2009). Beginning with the factor analytic work of Achenbach and colleagues on dimensional
syndromes (Achenbach, 1966; Achenbach, Conners, Quay, Verhulst, & Howell, 1989; Achenbach,
Ivanova, & Rescorla, 2017), structural analyses have revealed transdiagnostic factors underlying a

wide range of mental disorders in children, adolescents, and adults (Achenbach, Krukowski, Dumenci,
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& Ivanova, 2005; Kotov et al., 2011; Lahey et al., 2008; Slade & Watson, 2006; Vollebergh et al.,
2001; Wright et al., 2013).

Such structural models of psychopathology provide parsimonious summaries of observed
patterns of psychiatric comorbidity, and as a result have gained a great deal of traction, including
improved reliability and validity, demonstrated utility, and clinical applications (Andrews et al., 2009;
Eaton, Rodriguez-Seijas, Carragher, & Krueger, 2015; Kim & Eaton, 2017; Rodriguez-Seijas, Eaton,
& Krueger, 2015; Rodriguez-Seijas, Eaton, Stohl, Mauro, & Hasin, 2017; Waszczuk et al., 2017). An
increasing number of findings in the recent literature also suggest that various models can be situated
into an overarching hierarchy (Farmer, Seeley, Kosty, Olino, & Lewinsohn, 2013; Kim & Eaton, 2015;
Kotov, et al., 2017; Markon, Krueger, & Watson, 2005; Wright & Simms, 2015). Indeed, such findings
have culminated in the development of a recently proposed framework—the Hierarchical Taxonomy of
Psychopathology (HiTOP)—that organizes internalizing, externalizing, and other transdiagnostic
dimensions (e.g., thought disorder, somatic problems, sexual dysfunctions) into an multilevel hierarchy
(Kotov, et al., 2017). This allows for an investigation of hierarchy as construct (Forbes et al., 2017;
Kim & Eaton, 2015; Seeley, Kosty, Farmer, & Lewinsohn, 2011), which challenges researchers to
think about how these factors can be integrated into comprehensive hierarchical structures (e.g., Kotov,
et al., 2017), as well as issues of breadth and specificity (Krueger, Tackett, & MacDonald, 2016).
Thus, progress is being made with regard to using structural approaches to delineate a quantitative
taxonomy of psychopathology.

Unresolved Questions for Transdiagnostic Model Comparisons

Although evidence from structural research has converged on transdiagnostic

reconceptualizations of mental disorder classification, fundamental questions of how best to model

these constructs remain unclear. For instance, there is a great deal of support for two distinct
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transdiagnostic factors, internalizing and externalizing, which tend to be sizably correlated (e.g.,
ranging from r = .4 to .7; for a review and discussion of psychopathology factor interrelations, see
Eaton, South, & Krueger, 2010), but not so highly that these constructs are conceptually indistinct (i.e.,
factor correlations >.80 or .85 are indicative of poor discriminative validity; Brown, 2015). Even so,
the sizable correlations among transdiagnostic factors in structural models have led some researchers
to posit a general factor of psychopathology (Caspi et al., 2014; Lahey et al., 2012; Lahey et al., 2015;
Patalay et al., 2015; Simms, Gros, Watson, & O'Hara, 2008; Snyder, Young, & Hankin, 2016). In an
effort to investigate the possible presence of such a general factor of psychopathology, multiple studies
have used a bifactor modeling approach, which specifies a general factor of psychopathology that
saturates al/l mental disorders, along with specific factors, such as internalizing and externalizing, to
capture residual covariation among indicators and reduce between-factor correlations (see Figure 2). In
this modeling approach, the general factor is parameterized to be orthogonal to (i.e., uncorrelated with)
the specific factors, and, most commonly, the specific factors are also parameterized to be orthogonal
to one another (Brown, 2015; Holzinger & Swineford, 1937; Reise, 2012)—although bifactor models
with correlated specific factors have sometimes been used (Carragher et al., 2016; Caspi, et al., 2014;
Laceulle, Vollebergh, & Ormel, 2015; Lahey et al., 2017; Olino, McMakin, & Forbes, 2018; Patalay,
et al., 2015; Waldman, Poore, van Hulle, Rathouz, & Lahey, 2016). Regardless of the exact
parameterization, the bifactor and correlated transdiagnostic factors models imply very different
conceptualizations of the latent structure of mental disorders and how transdiagnostic factors (and thus
mental disorders) relate to one another (for a detailed discussion on the different theoretical
implications of these models see van Bork, Epskamp, Rhemtulla, Borsboom, & van der Maas, 2017).
In particular, the correlated factors model estimates dimensions of psychopathology from the total

shared variance among subsets of observed indicators (e.g., fear is defined by the variance shared
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across phobias). In contrast, the bifactor model estimates both general and specific dimensions of
psychopathology, where the general dimension represents what is shared across all indicators, and the
specific dimensions reflect more circumscribed patterns of shared residual variance apart from general
psychopathology (e.g., features unique to fear once the general factor is taken into account).

Multiple studies have compared the correlated-factor and bifactor modeling approaches to
characterizing psychiatric comorbidity (e.g., Carragher, et al., 2016; Caspi, et al., 2014; Laceulle, et al.,
2015; Lahey, et al., 2012; Lahey, et al., 2017; Olino, Dougherty, Bufferd, Carlson, & Klein, 2014).
These studies typically have adjudicated these competing models via the comparison of model fit
indices (e.g., Bayesian information criterion [BIC] values). That is, researchers fit several competing
statistical models to a given dataset, and determine via fit indices which model is superior. In Figure 3,
we depict the number of studies published per year, between 2010 to October 2017, that compared
correlated-factor and bifactor models of psychopathology data (N = 56; see Appendix for details). The
notable increase in such studies after 2014, from about three per year from 2010 through 2014, to 14
per year from 2015 to 2017, is indicative of the bifactor model’s rising popularity — and extrapolating
from the figure, this trend seems likely to continue. Most strikingly, the bifactor model was deemed
superior to the correlated-factor model in 95% of the studies we reviewed. This may largely account
for the notable proliferation of bifactor models in recent structural psychopathology research.

Bias in Model Fit Indices

In recent years, a body of work has emerged in the modeling literature, particularly in research
on cognitive abilities, suggesting that traditional fit indices are biased' in favor of the bifactor model
(Bonifay, 2017; Gignac, 2016; Mansolf & Reise, 2017; Maydeu-Olivares & Coffman, 2006;
McFarland, 2016; Molenaar, 2016; Morgan, Hodge, Wells, & Watkins, 2015; Murray & Johnson,

2013; Reise, Kim, Mansolf, & Widaman, 2016; Yu, 2002). Two findings are particularly relevant.
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First, simulation studies have indicated that, even when data are generated from a known population-
level correlated factors model without misspecifications, comparative fit indices (i.e., CFI/TLI) tend to
favor the bifactor model rather than the correlated factors model, with BIC only performing well in
larger sample sizes (e.g., when N = 800 as opposed to when N = 200; Morgan, et al., 2015). Second,
when model misspecifications are added (i.e., a parameter included in the population-level data
generation model is not included in the simple structure models fit to the simulated data, such as small
correlated residuals between indicators, resulting in misfit), these misspecifications often distort the fit
indices’ performance toward the bifactor model (Murray & Johnson, 2013). These findings are
concerning, given that researchers in psychopathology commonly choose models primarily based on
fit*, a feeble practice when all candidate models tend to fit the data well.

There are several reasons for this general insensitivity of traditional fit indices when comparing
latent variable models. Most important are considerations of what differentiates these models, such as
the unique rank constraints that common measurement models imply for the data (i.e., different latent
variable models entail distinguishable patterns of constraints on the observed covariance matrix;
Mansolf & Reise, 2017; Silva, Scheines, Glymour, & Spirtes, 2006) and differences in fitting
propensity (i.e., a model’s average capacity to fit a variety of data patterns; Preacher, 2006). For
example, the bifactor model has more built-in flexibility due to its extra dimension (i.e., p) and larger
number of parameters (i.e., increased model complexity), which can accommodate minor
misspecifications with fewer penalties to fit indices than the correlated-factor model, such as correlated
residuals between indicators that are too small to justify inclusion in the model (Murray & Johnson,
2013). Further, there is evidence that the bifactor model risks overfitting data by capturing random
noise (Bonifay, 2017) and/or capitalizing on fluctuations in sampling error that give rise to chance

intercorrelations (Murray & Johnson, 2013), as opposed to valid variability that researchers intend to
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model (Reise, et al., 2016). These properties increase the likelihood that a bifactor model will provide
superior fit to data relative to the less complex correlated-factor model (Reise, 2012). Such evidence
from other fields supports the possibility that findings from structural psychopathology studies in
which a bifactor model was identified as superior to a correlated factors model by examination of fit
indices may be the result of fit index bias. This apparent vulnerability of fit indices warrants a direct
examination in a simulation study reflective of common scenarios in modeling the latent structure of
mental disorders.
Unresolved Questions

Whereas prior simulation studies in the field of cognitive abilities have examined the
limitations of using fit indices for model comparisons, this issue has not yet been thoroughly studied in
the psychopathology literature. This is relevant because data typically encountered in structural studies
of psychopathology differ from that in cognitive modeling in two aspects. First, cognitive ability
models usually feature continuous data from considerably smaller sample sizes in the range of 200 to
2,000 (Chen, West, & Sousa, 2006; Gignac, 2016; Maydeu-Olivares & Coffman, 2006; Molenaar,
2016; Morgan, et al., 2015; Murray & Johnson, 2013), with most studies focusing on comparisons
between the higher-order and bifactor models. By contrast, psychopathology structural studies
typically use either dichotomous indicators (e.g., present/absent diagnoses or criteria; Caspi, et al.,
2014; Greene & Eaton, 2016; Greene & Eaton, 2017; Laceulle, et al., 2015) or positively skewed
symptom count variables (Eaton, et al., 2011; Olino, et al., 2014). Second, these differences in
indicator distributions warrant different estimators (cognitive: maximum likelihood; clinical: weighted
least squares with adjusted means and variances [ WLSMV], or robust maximum likelihood [MLR]).
Thus, various model misspecifications particularly germane to structural psychopathology modeling

scenarios (e.g., cross-loadings and correlated residuals among indicators between and across factors)
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have not been jointly examined in previous simulation research using more than one estimator and
sample sizes greater than 2,000. In particular, no prior simulation study has accounted for these types
of model errors when generating sample datasets from a known correlated factors population-level
structure, despite previous demonstrations that these common characteristics of data have the potential
to affect fit indices with both continuous and categorical variables (Morgan, et al., 2015; Murray &
Johnson, 2013; Yu, 2002). Only the one study by Morgan and colleagues (2015) directly assessed the
performance of both the correlated factors and bifactor models when data were generated by a
correlated factors model, but did not include misspecifications in their population model. While
Murray & Johnson (2013) provide preliminary work on the topic using a higher-order structure as the
data generating model, they limited the size of correlated residual and cross-loading parameters to
values of .10 to .20 as they were interested in minor unmodeled complexity (i.e., the criterion for
meaningful cross-loadings is typically >.30; McDonald, 1999; Sass & Schmitt, 2010), which might be
too small for structural models of psychopathology (e.g., Greene & Eaton [2016] found panic with
agoraphobia to cross-load on distress at .29 and fear at .45).
The Present Study

To address these questions, we simulated data from a known population-level correlated factors
latent structure, and conducted separate analyses to include various model misspecifications. These
data were simulated based on model parameters from one of the most seminal structural studies to date
(Lahey, et al., 2012), which showed superiority of the bifactor model over the correlated factors model
via fit index comparisons. In simulating data, we created data-generating correlated three-factor
models with (1) no misspecifications, (2) a cross-loading where one item loaded on two factors, (3) a
correlated residual between two indicators loading on different factors, and (4) a correlated residual

between two indicators loading on the same factor (see Figure 4). Due to the interplay between sample
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size and fit statistics/indices (Marsh, Hau, & Grayson, 2005), each misspecification was tested with
different sample sizes and strengths of misspecification. To mimic characteristics of frequently
modeled psychopathology data, we examined sets of positively skewed indicators (representing
symptom counts) and sets of dichotomous indicators (representing diagnostic indicators) for which we
used MLR and WLSMV estimators, respectively. Thus, in seeking to extend previous lines of this
research to psychopathology, this study is novel due to its inclusion of both MLR & WLSMV
estimators, an expanded the range of sample sizes (500 to 40,000), as well as an increased range of
types and magnitude of population model misspecifications (.1, .3, and .5) that are based on values in
prior clinical research (e.g. Greene & Eaton, 2016). Lastly, we assessed the extent to which our two
competing models are statistically distinguishable by conducting tests of model equivalence between
the bifactor model and each of the four data-generating correlated factor models (Hershberger &
Marcoulides, 2006).
Method

We used the Monte Carlo simulation capabilities in Mplus (Version 7.11; Muthén & Muthén,
1998-2015) to simulate sample datasets from a known population-level structure—a correlated three-
factor model with a variety of model misspecifications, as described below—and then examined the
performance of two confirmatory factor analytic (CFA) models commonly used in the
psychopathology literature: a three-factor oblique CFA, representing the correlated factors model
(Figure 2), and a four-factor orthogonal bifactor CFA, representing the bifactor model (one general
factor with three specific factors; Figure 3). Below, we describe how the simulated models were
parameterized. All syntax can be found in the online supplementary materials.

Data Generation
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Indicators. In psychopathology research, the structure and relative fit of CFA models are often
investigated using large epidemiological samples. Thus, to increase the relevance of our simulations to
psychopathology studies, we based population model parameters (i.e., factor correlations and loadings)
on standardized solutions from the correlated three-factor model delineated by Lahey and colleagues
(2012) using data from the National Epidemiologic Survey on Alcohol and Related Conditions
(NESARCGC; for a full description of the sampling frame see Grant & Dawson, 2006). This true
correlated factors model contained two just-identified factors with three indicators each (indicators
denoted as Y1-Y6) and one factor with five indicators (Y7-Y11), corresponding to the distress, fear,
and externalizing factors of Lahey et al.’s model (see Figure 4 for the correlated three-factor model
used for simulations in the present study).

To investigate the performance of fit indices in models with categorical indicators, we
parameterized 11 categorical indicators according to the proportion of endorsement for each in Wave 1
of NESARC (N=43,093): Y1 (18.2%), Y2 (4.9%), Y3 (4.5%), Y4 (1.1%), Y5 (9.5%), Y6 (5.0%), Y7
(3.6%), Y8 (12.5%), Y9 (1.8%), Y10 (17.7%), and Y11 (1.3%). For investigation of fit index
performance in models with skewed symptom count indicators, we parameterized continuous
indicators with positively skewed response distributions (i.e., as typical of symptom counts in the
general population) with skewness of 2.0 using the MplusAutomation package in R (Hallquist &
Wiley, 2018). This level of skew is representative of real data distributions found in community-based
mental health research (Curran, West, & Finch, 1996).

Estimators. Robust maximum likelihood (MLR) and mean-and-variance-corrected weighted
least squares (WLSMYV) estimators were used because they are the most common methods for
handling discrete data and are robust to non-normality (Beauducel & Herzberg, 2006; Flora & Curran,

2004; Li, 2016; Rhemtulla, Brosseau-Liard, & Savalei, 2012; Savalei, 2014). For dichotomous
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diagnoses as indicators, all CFA models were fit to tetrachoric correlations using WLSMV, which is
computationally less demanding than MLR when including correlated residuals between dichotomous
indicators. For skewed continuous indicators, all CFA models were fit to Pearson correlations using
MLR with a maximum of 1,000 iterations, because MLR 1is a continuous estimation method with
statistical corrections to standard errors and chi-square statistics for non-normally distributed indicators
and is used frequently in psychopathology research (Lahey, et al., 2012; Lahey, et al., 2015; Olino, et
al., 2014; Snyder, et al., 2016; Tackett et al., 2013).

Sample size. To investigate fit index bias as a function of sample size, we simulated data for
nine samples of varying size (N = 500; 1,000; 2,000; 3,000; 4,000; 5,000; 10,000; 20,000; 40,000),
representing a broad range of samples used in structural equation models in the psychopathology
literature.

Population models and sample model comparisons. Our simulation study included the
manipulation of four parameters (totaling 180 conditions): 2 estimators (WLSMYV vs. MLR) and
related indicator type (categorical vs. skewed continuous) x 9 sample sizes x 10 model
misspecifications (1 correctly specified, 3 levels of factor cross-loadings, 3 levels of correlated
residuals within-factor, and 3 levels of correlated residuals between-factors) = 180 cells. We generated
an empirical sampling distribution of 500 virtual random samples for each simulation condition.

For our population-level models, we simulated data from four correlated factors models, where
one model was correctly specified and three were misspecified. We then fit two models to the data —
and compared the fit of a bifactor versus a correlated factors model to examine fit index performance.
The first model for simulating data was a three-factor correlated factors model with no
misspecifications. We then investigated the impact of the three types of model misspecification in

separate simulations (see Figure 4): (1) a cross-loading where one indicator loaded on two factors (i.e.,
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Y4 on both F1 and F2), (2) a correlated residual between two indicators loading on different factors
(i.e., between Y3 and Y4), and (3) a correlated residual between two indicators loading on the same
factor (i.e., between Y7 and Y8). These three types of misspecification were each represented at four
levels of strength, with the standardized loading/correlated residual value fixed to either .00 (i.e., the
misspecification was not present), or to .10, .30, or .50—values considered weak, moderate, and
strong, respectively (Cohen, 1988). Each dataset included only one misspecification manipulation,
providing a conservative test of bias, as psychopathology data are likely to deviate from simple
structure CFA models in multiple respects. The rationale for specifying the residual correlation
between two indicators loading on the two just-identified factors (F1 & F2) was that this would be
most likely as these factors are most highly correlated. For the cross-loading, the proportions of
endorsement for Y4 correspond to panic disorder with or without agoraphobia, given previous
evidence that this composite variable includes characteristics of both distress and fear transdiagnostic
factors in the NESARC dataset (i.e., standardized factor loading of .29 on the distress factor and .45 on
the fear factor; Greene & Eaton, 2016).
Model Equivalence

We conducted tests of model nesting and equivalence, which is often difficult to evaluate in
practice and tends to be ignored as a result (Bentler & Satorra, 2010; Henley, Shook, & Peterson,
2006; Hershberger & Marcoulides, 2006; Maccallum, Wegener, Uchino, & Fabrigar, 1993; Raykov &
Penev, 1999). Broadly defined, equivalent models differ in structure and substantive explanations of
the data being described, but cannot be differentiated using measures of overall fit because they yield
identical model-implied covariance matrices, residuals, and goodness-of-fit indices, such as chi-square
values and descriptive fit indices (Hershberger & Marcoulides, 2006). When defined in terms of

nesting (Bentler & Satorra, 2010), models are covariance matrix nested when they have different
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degrees of freedom, but the implied covariance matrix under the more restricted model (e.g., correlated
factor) can be perfectly reproduced under the more general model (e.g., bifactor). For simplicity, the
term model equivalence will be retained throughout. To investigate model equivalence, we conducted
separate tests for each type and level of misspecification (i.e., no misspecification, cross-loading, and
correlated error) for the four population-level correlated factor models, with a sample size of N =
1,000. First, we obtained the covariance matrix implied by each data-generating correlated factor
model and then fit each resulting matrix by both a bifactor model and a correlated factor model (with
the relevant misspecification, such as a cross-loading, if present in the population-level model). In
other words, we sought to characterize how well the bifactor model might accommodate a population-
level correlated factor model (i.e., discrepancies due to approximation). Identification of potential
model equivalence is important for providing a comprehensive account of the underlying reasons for
fit indices’ favoring of a bifactor model relative to a correlated factor model: (1) pro-bifactor bias due
to sampling error and capitalization on chance (i.e., discrepancies due to estimation), as opposed to (2)
pro-bifactor bias due to perfectly reproducing the population covariance matrix implied by one, or
more, of our correlated three-factor models of interest.
Fit Index Criteria

We examined the performance of various fit indices in correctly identifying the data as
emerging from a population-level correlated factors model versus incorrectly identifying the bifactor
model as superior by fit. To do so, we investigated the following fit statistics, which are common in
psychopathology research. First, to quantify fit of the data to each fitted model we used the root mean
squared error of approximation (RMSEA; Steiger, 1990), for which good fit is indicated by values <
.06. Second, to measure differences between sample and estimated variance and covariances we used

the weighted root-mean-square residual (WRMR; Muthén & Muthén, 1998-2015) for dichotomous
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indicators, and the standardized root mean square residual (SRMR; Hu & Bentler, 1995) for
continuous indicators. Good fit is indicated by WRMR < 1.0 and SRMR < .08. Third, to assess
improvement in fit relative to a saturated model, we used the comparative fit index (CFI; Bentler,
1990) and the Tucker—Lewis index (TLI). Values of CFI/TLI > .95 are common guidelines for good
model fit (Hu & Bentler, 1999). Fourth, to compare the two models directly against each other, we
used the Akaike information criterion (AIC; Akaike, 1987), Bayesian information criterion (BIC;
Raftery, 1995), and the sample-size adjusted BIC (SABIC; Sclove, 1987), for which lower values are
superior. These indices were not available for WLSMV, because they are not defined in least squares
estimation.

Fitted model comparisons. Models were compared in several ways. First, to approximate the
typical approach in the literature, we averaged each fit index across all 500 simulations of each of the
180 model parameterizations, and then we compared whether the bifactor or correlated factors model
exhibited a superior mean value for each fit index. Situations in which means were equal for a given
index were considered a tie, and thus as a failure of the fit index to correctly identify that the sample
data were generated from a correlated factors model. Standard deviation (SD) units were also
calculated for the mean values of each fit index. Second, to address the ubiquitous issue of all
competing models fitting well in most psychopathology studies, we examined whether the size of
differences (A) in mean TLI (> .010; Gignac, 2007) and AIC/BIC (< 10; Raftery, 1995) values met
established criteria when either model was found to fit best. Third, we examined the percentage of
times that fit indices correctly identified the correlated model as superior, incorrectly favored the
bifactor model, and the percentage of ties across all 500 simulations in each study condition. The
threshold for strong model selection performance was > 95%, because these results are intended to

inform an applied perspective (e.g., if a researcher is comparing two models, one is correct and one is
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wrong, what is the probability they will choose the correct model?). Lastly, as a formal comparison of
which model was closer to the true data generating model, the Vuong test for non-nested structural
models (Vuong, 1989) was included as a test of both AIC and BIC differences between MLR models
using the log-likelihood for model selection (Merkle, You, & Preacher, 2016). In each simulation
setting, we examined the percentage of significant models (p<.05) as a test of whether the correlated
factor or bifactor model fit better than the other according to AIC and BIC.
Results

Model Convergence

Across the 180,000 simulated datasets (180 cells x 500 random samples x 2 models fit to each),
3.92% failed to converge. Nearly all models that failed to converge were bifactor solutions (i.e., 7.84%
of bifactor models vs. 0.008% of correlated factor models). Of the 45,000 correlated factors models
estimated using WLSMV for dichotomous indicators, 7 (0.02%) solutions did not converge, which all
emerged from the smallest dataset with N=500. Of the 45,000 estimated bifactor models using
WLSMV, 5,988 (13.31%) solutions did not converge; this pattern was evident for samples of differing
size, save for when sample size was equal to 40,000 in which case all bifactor solutions converged. For
models estimated using MLR, all models that failed to converge were bifactor solutions. Of the 45,000
bifactor models generated for each sample size, a total of 1,069 (2.38%) solutions did not converge;
759 (1.69%) of these were from datasets with a sample size of 500, 252 (0.56%) from a sample size of
1,000, 44 (0.10%) from a sample size of 2,000, and 10 (0.02%) from a sample size of 3,000. Thus, as
sample size increased, the proportion of models that successfully converged also increased. We also
observed that non-convergence might be related to response category or the type of estimator used, as
non-convergence was especially high for bifactor models estimated with WLSMV methods for

dichotomous variables. When taken together, these results are consistent with previous observations
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that higher non-convergence rates are associated with both small sample sizes and binary indicators
(Flora & Curran, 2004).
Model Equivalence

For analyses involving the correctly specified correlated factor model, the bifactor model
perfectly reproduced this implied population-level covariance matrix. So, our data-generating
correlated factor model could be perfectly re-expressed as a bifactor model when no cross-loadings or
correlated errors were present (i.e., the more restricted correlated factor model is nested within the
more general bifactor model). These two models also yielded identical fit index values for CFI, TLI,
RMSEA, and SRMR. Although, the information criteria (AIC and BIC) did favor the more
parsimonious correlated factor model (i.e., correlated factor model yielded lower values for AIC [-16]
and BIC [-55.26]).

For analyses involving data-generation models with cross-loadings and correlated errors, the
bifactor model was unable to perfectly reproduce these implied population-level correlation matrices
(i.e., the bifactor model invariably produced some residuals). More specifically, when fit to each
model-implied covariance matrix, the bifactor model provided a better fit for the cross-loading
condition than the correlated error conditions, consistent with our results using mean values, percent
correct, and the Vuong test. In all cases, as the size of the cross-loading and correlated error grew
larger, the bifactor model showed poorer fit, especially when there was a within-factor correlated
residual (e.g., RMSEA=.80 when this correlated residual was .5). The information criteria performed
best across each condition (lower AIC/BIC values, ranging from -14.22 to -292.02), with TLI showing
meaningful improvements in fit for the correlated factor model when between- and within-factor
correlated residuals were moderate to large (improvements here were also observed for CFI and

RMSEA values).
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Fitted Model Comparisons

Models without misspecification. Table 1 presents the mean values of each model fit index
for the fitted correlated factors (left half of each table) and bifactor models (right half) when the true
correlated three-factor model was without misspecification (see Supplemental Materials Table 1 for
SD values). The tables are color coded, such that dark gray shaded cells indicate a model showing
superior values to the competing model, white cells indicate a model showing inferior values to the
competing model, and light gray shaded cells indicate ties.

Across both MLR and WLSMYV estimation methods, the SRMR and WRMR indices
consistently favored the bifactor model. This is expected, despite these models’ equivalent covariance
matrices, as neither index penalizes for model complexity. For the remaining approximate fit indices —
RMSEA, CFI, and TLI-most cases were ties, and, when not a tie, the bifactor model was deemed
superior by fit more often than the correlated factors model. In contrast, the information criteria —BIC,
SABIC, and to a lesser extent AIC—identified the correlated factor model as best fitting across all
sample sizes. This trend is also expected as these indices include penalties for model complexity, with
the BIC imposing the most severe penalty for less restricted models, which is particularly relevant to
the bifactor model because it is less parsimonious than the correlated factors model.

Models with a cross-factor loading. Next, the models were compared based on data simulated
from a correlated factors model that contained one indicator loading on two factors (see Figure 4).
However, this cross-loading was not modeled in either the correlated factors or bifactor models that
were fit to the data (see Figures 1 and 2). Table 2 presents the mean value of each global fit index for
correlated factors and bifactor fitted models across all sample sizes and levels of misspecification (see

Supplemental Materials Table 2 for SD values).
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MLR. RMSEA, CFI, TLI, and SRMR all failed to correctly identify the correlated factors
model as the true population-level model, in every single study cell, even when the cross-loading was
small (0.1). Approximately two-thirds of these comparisons incorrectly identified the bifactor model as
superior, while the other third indicated a tie between models; ties were mostly only present when
misspecification was small (cross-loading of 0.1), and no ties were present when the misspecification
was large (cross-loading of 0.5). Similarly, AIC incorrectly favored the bifactor model in all but one
comparison. However, BIC and SABIC performed somewhat better. BIC correctly identified the
correlated factors model in nearly every comparison, although BIC incorrectly identified the bifactor
model as superior when sample sizes were large (N > 10,000) and the misspecification was moderate
to large (cross-loading = 0.3 or 0.5). SABIC correctly supported the correlated factors model
consistently when the cross-loading was small (0.1), inconsistently when the cross-loading was
moderate (0.3), and incorrectly supported the bifactor model when the cross-loading was large (0.5)
regardless of sample size.

WLSMYV. Similar to the MLR results, all fit indices failed to correctly identify the correlated
factors model as the true population-level model, except in a single cell. This was true for RMSEA,
CFI, TLI, and WRMR. Across all cells and indices, approximately half favored the bifactor model and
half produced a tie. In every case, WRMR favored the bifactor model, and all fit indices favored the
bifactor model when sample sizes were small. As the size of the cross-loading increased, more indices
that were tied came to favor the bifactor model. Indeed, at a cross-loading of 0.5, TLI came to favor the
bifactor model in 8 of 9 comparisons.

Models with a between-factor correlated residual. We compared the fit of competing models
when the true correlated factors model was specified to contain a correlated residual on between-factor

indicators (see Figure 4). Table 3 presents the mean value of each global fit index across all sample
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sizes and levels of misspecification for correlated factors and bifactor fitted models (see Supplemental
Materials Table 3 for SD values).

MLR. In most cases, RMSEA, CFI, and TLI fit indices failed to correctly identify the
correlated factors model as the true population-level model. Many fit indices provided ties between
models, with fewer providing support for the bifactor model, and even fewer correctly providing
support for the correlated factors model. When the correlated residual was small (» = .1), indices
tended to produce ties, with more support emerging for the bifactor model as the residuals became
larger; when the residual was large (» =. 5), all three indices incorrectly favored the bifactor model.
SRMR incorrectly favored the bifactor model when the correlated residual was small, but correctly
favored the correlated factor model only when the correlated residual was large. AIC incorrectly
favored the bifactor model in nearly every comparison. BIC correctly identified the correlated factor
model when the correlated residual was small, or when it was moderate and sample size was moderate;
however, BIC incorrectly favored the bifactor model when the correlated residual was moderate at
large sample sizes, or when the correlated residual was large. SABIC incorrectly supported the bifactor
model when the correlated residual was moderate or large.

WLSMV. In most cases, all fit indices failed to correctly identify the correlated factors model
as the true population-level model. Many fit indices provided ties between models, with fewer
providing support for the bifactor model, and even fewer correctly providing support for the correlated
factors model. WRMR favored the bifactor model in every cell; in small samples all indices incorrectly
favored the bifactor model. RMSEA showed the most accurate performance, although it only correctly
identified the correlated factors model in about one-third of comparisons.

Models with a within-factor correlated residual. We evaluated the fit of correlated factors

and bifactor models when the true correlated factor model was specified to include a correlated
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residual on within-factor indicators (see Figure 4). Table 4 presents the mean value of each global fit
index across all sample sizes and levels of misspecification for both models (see Supplemental
Materials Table 4 for SD values).

MLR. In stark contrast to our previous sets of results, RMSEA and TLI were more likely to
correctly identify the correlated factor model across nearly all levels of within-factor correlated
residuals and sample sizes. The CFI largely produced ties at small to moderate levels of model
misspecification ( = .1 and .3), but correctly identified the correlated factors model when the model
showed a large misspecification (» =.5). SRMR consistently favored the bifactor model incorrectly, as
did AIC in most cases. BIC and SABIC correctly identified the correlated factor model, except for
when sample sizes became large in the large misspecification condition.

WLSMV. All fit indices consistently failed to identify the correlated factors model as superior.
Approximately half of the cells produced a tie and half incorrectly favored the bifactor model. At
larger correlated residual values (» = .5), all indices incorrectly favored the bifactor model, with
WRMR always supporting the bifactor model at any level of misspecification. Further, WRMR began
to deteriorate as sample size increased in the moderate to large misspecification conditions, such that
neither model provided an acceptable absolute fit to the data (i.e., WRMR > 1.0).

Differences in fit index and information criteria values. Using Gignac’s (2007) practical
difference criterion of ATLI > .010, we observed that improvement in TLI values for both the
correlated factor and bifactor models never exceed this benchmark when using WLSMV. Although,
the bifactor model’s TLI values did approach this criterion in all misspecification conditions when
sample size was small (N=500 and 1,000; ATLI range: .001 to .009). When using MLR, a different
pattern emerged such that the correlated factor model TLI value consistently exceeded the bifactor’s

(ATLI range: .016 to .024) when within-factor correlated residuals were .5 across each of our nine
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sample size conditions, indicating minimal impact of sample size on TLI in this context (Marsh, et al.,
2005). Consistent with WLSMYV results, improvements in the bifactor’s TLI values remained below
ATLI > .010 when estimated using MLR.

With regard to differences for the information criteria (< 10; Raftery, 1995), our MLR results
are consistent with the pattern of mean value results in that the bifactor model only met this criterion
for ABIC when sample size was large (N > 1,000) and between-factor correlated residuals or cross-
loadings were specified at moderate to large levels. Notably, when between-factor correlated residuals
were .5, the bifactor outperformed the correlated factors model across seven sample sizes (N > 2,000).
These improvements in BIC values also showed a marked decrease as sample size became larger
(ABIC =-25.58 when N = 2,000 versus ABIC =-1171.40 when N = 40,000). In contrast, we observed
only three out of 72 instances in which the correlated factor model was favored by BIC and did not met
the criterion of less than 10, meaning BIC performed well. The degree of these differences in BIC
values was also less extreme compared to when the bifactor was favored (ABIC range: -10.02 to -
69.50). Finally, AAIC results also mirrored our mean value results as lower AIC values were generally
associated with the bifactor model across nearly all types and levels of misspecification. These values
also tended to consistently decrease by more than 10 when sample size was large (> 20,000) and/or
misspecification levels were moderate to high (AAIC range: -11.20 to -1240.10). There was no single
instance in which the correlated factor model was favored by AIC and met the criterion of AAIC < 10
(range: -0.52 to -9.69).

Percent accuracy. Using a threshold of > 95% for strong performance across all 500
simulations in each misspecification condition, we examined the percentage of times that fit indices
were able to correctly identify the correlated model as superior, incorrectly favored the bifactor model,

and the percentage of ties (see Supplemental Materials Tables 5 through 12 for detailed results). For
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models estimated using WLSMV, none of our simulated results met the specified benchmark. For
MLR, we observed a substantial decrease in the number of times fit indices were able to identify the
correct model relative to the mean value results. Specifically, BIC and SABIC performed well across
all study conditions until the underlying model contained misspecifications of .3, while AIC never met
our accuracy threshold. Regarding MLR’s fit indices (RMSEA, CFI, TLI, and SRMR), no index met
the threshold when the underlying model contained a cross-loading or a between-factor correlated
residual. However, RMSEA & TLI did perform well when a within-factor correlated residual was
present, but only in samples > 10,000 when the misspecification was small (.1) and when
misspecifications were moderate to large (.3 and .5).

Vuong test. When the Vuong test for AIC and BIC was applied to our simulated continuous
data, we found results that were consistent with the observed pattern in both our mean value and
percent accuracy results (see Supplemental Materials Tables 13 through 16 for detailed results). The
Vuong test for AIC was never able to identify the fitted correlated factors model as being closer to the
true data generating model. For BIC, the Vuong test performed well when the underlying model
contained small misspecifications (.1), However, test performance for BIC steadily decreased across
all study conditions once model misspecifications reached .3.

Discussion

Several studies on the structure of psychopathology have applied both correlated factors and
bifactor models. When these two models’ fit indices have been directly compared, they have
consistently favored a bifactor representation of observed comorbidity patterns (i.e., in 95% of
studies). However, research from other fields suggests that traditional fit statistics are biased in favor
of the bifactor model (e.g., Bonifay, 2017; Gignac, 2016; Morgan, et al., 2015; Murray & Johnson,

2013). The aim of the current study was to extend this line of research to common scenarios of mental



SIMULATION STUDY OF FIT INDEX BIAS 25

disorder structural modeling by conducting a test of potential bias that is specific to the bifactor model
of psychopathology. To do this, we simulated data from known population-level correlated factors
models, with different types and degrees of model misspecifications, and ascertained to what extent fit
indices identified a correlated factors model as data-generating model. Second, we conducted
complementary tests of model equivalence by evaluating whether the bifactor model could perfectly
reproduce the population covariance matrices implied by our each the four correlated factor models of
interest (i.e., population-level simple structure, a between-factor cross-loading, a between-factor
correlated residual, or a within-factor correlated residual).
General Fallibility of Fit Indices

Overall Findings from Sample Model Comparisons Our study revealed different types of
pro-bifactor model fit index bias across a wide range of modeling scenarios. When misspecifications
were present, we observed a frequent failure of all fit indices to identify the correlated factors model as
the underlying population-level model. This was the case across estimators and sample sizes. In only
one scenario—the use of the MLR estimator with a within-factor correlated residual—did three fit
statistics (RMSEA, TLI, and BIC) provide consistent support for the correct correlated factors model
from which the data were generated. Although, even in that scenario, most other fit indices performed
inconsistently, with some correctly identifying the correlated factors model when model
misspecifications were small (AIC) or large (CFI), and when sample sizes were small or large,
depending on the index. Furthermore, performance decreased for all fit statistics in each study
condition when assessed according to both the percentage of correctly identified models and the Vuong
test. This general pattern of fit indices’ insensitivity to the population-level model was evident despite
this study’s conservative tests of model misspecifications (i.e., including only one misspecification at a

time).
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Overall, larger samples sometimes improved performance, but generally led to worse
performance, especially for BIC and other information criteria. Further, BIC and SABIC demonstrated
increasing pro-bifactor bias as a function of increasing levels of model misspecification, a trend that
was evident across all types of model fit comparisons. Previous research has shown that the bifactor
model can better account for unmodeled complexity due to its less parsimonious structure relative to
the correlated factors model (Murray & Johnson, 2013). Unfortunately, even for fit indices that have
stronger penalties for model complexity and that favor parsimony (e.g., BIC and, to a lesser extent,
AIC; Burnham & Anderson, 2004), these penalties proved inadequate to correctly identify a correlated
factors model in simulated data with misspecifications likely to be present in psychopathology
modeling scenarios (Greene & Eaton, 2016; Rodriguez-Seijas, et al., 2015). Thus, while BIC, SABIC,
and AIC penalize for model complexity in the form of greater numbers of freely estimated parameters,
they do not penalize the bifactor model for additional forms of complexity that go beyond the number
of parameters (i.e., functional form, defined as the way a model’s equations specify and combine
parameters and variables; for an extended discussion see Bonifay, 2017). This shortcoming results in
the possibility that more complex models may be deemed as “best fitting” by virtue of their ability to
accommodate minor misspecifications that are not meaningful (i.e., high fitting propensity; Bonifay,
2017; Bonifay, Lane, & Reise, 2016; Reise, et al., 2016). Thus, a balance is needed between goodness-
of-fit and structural complexity. One way to achieve this balance is through the use of minimum
description length (MDL) based approaches (e.g., see Markon & Jonas, 2016), which take into account
both the number of freely estimated parameters and the model’s functional form in order to help
researchers arrive at relatively simple models that provide adequate, albeit less than perfect, fit to the

data (Bonifay, 2017).
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There was a notable trend for some fit indices to be better at correctly selecting the correlated
factors model when the population model contained a within-factor correlated residual (i.e., fit index
performance improved as levels of model misspecification increased). In other words, the best way we
found to identify the correct general model was to parameterize increasingly incorrect models (e.g.,
TLI values for the correlated factor model only meaningfully exceeded the bifactor’s when within-
factor correlated residuals were .5). Conversely, this pattern also indicates that the bifactor model is
especially good at accommodating misspecifications that span the specific factors (i.e., between-factor
correlated residuals and cross-loadings), which can be captured by the general factor as common
variance, while it is less effective at accounting for misspecifications that fall within specific factors.
The issue of model misspecification is especially relevant to structural researchers in that the size of
the within- and between-factor correlated residuals that we modeled appear quite reasonable and likely
common. That is, correlations among residuals of the sizes s = .1, .3, or .5 are not uncommon in
structural investigations — particularly in studies that use multiple scales from a single measure to
capture different constructs, which introduce shared method variance and increase the likelihood that
corresponding indicators show correlated residuals. Correlated residuals may also emerge when
disorders have similar symptoms. While most studies do not report residual correlation matrices
because adequate fit is obtained without modeling these correlations, Rodriguez-Seijas and colleagues
(2015) found it necessary to include two correlated residuals in a correlated-factor model between (1)
major depressive episode and dysthymia (» =.7) and (2) alcohol use disorder and drug use disorder (
=.8), likely due to similar indicator content. The size of these correlated residuals exceeded even the
largest correlated residual in the present study, suggesting the size of model misfit may be greater in

real-world scenarios.
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The observed pattern of non-convergence for bifactor models is not unique to the present study.
Previous simulation studies have also reported a negative association between non-convergence of
bifactor models and sample size (Maydeu-Olivares & Coffman, 2006; Morgan, et al., 2015; Murray &
Johnson, 2013), especially in the context of binary indicators (Flora & Curran, 2004). Although, non-
convergence problems may also be attributed to the bifactor’s orthogonal parameterization. That is, we
did not allow the bifactor’s specific factors to be correlated (as the model is commonly parameterized
in psychopathology research), which might reduce convergence problems due to misspecification, low
factor loadings, or small sample sizes. Nonetheless, such correlated specific factors not only violate the
classic representation of an orthogonal bifactor model (Spearman, 1904), but also further complicate
inferences drawn from the bifactor model by changing the meaning of p and suggesting the presence of
additional common variance beyond p that is contributing to the specific factor’s interrelatedness (Eid,
Geiser, Koch, & Heene, 2017; Reise, 2012). Therefore, when considering whether to allow for oblique
bifactor solutions, it is necessary to carefully weigh the advantages (e.g., higher convergence rates and
better approximations of bifactor simple structure; Jennrich & Bentler, 2012) and disadvantages (e.g.,
oblique solutions are potentially less stable than orthogonal solutions; Lorenzo-Seva & Ferrando,
2018) before adopting an oblique modeling strategy.

Model Nesting and Equivalence. Discussion and identification of equivalent models is
infrequent, despite the methodological significance of this issue in fitted model comparisons (Bentler
& Satorra, 2010; Henley, et al., 2006; Hershberger & Marcoulides, 2006; Maccallum, et al., 1993;
Raykov & Penev, 1999). Equivalent models arrive at the same model-implied covariance matrix and
yield equivalent fit index values, but are not equivalent in structure (Hershberger & Marcoulides,
2006). Inferences based on data-model fit are severely restricted for equivalent models, because one

model cannot be supported without all equivalent models being supported. Limitations are also placed
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on inferences about the causal relations implied by a hypothesized model as the size and direction of a
model’s structural relations, and its external correlates, depend on which equivalent model is selected.
We conducted tests of model equivalence by evaluating discrepancies between the population
covariance matrices implied by each of the four correlated factor models and the bifactor model-
implied covariance matrix when it was fit to a population covariance matrix. These supplementary
analyses indicated that fit indices' favoring of the bifactor model was not always characterized by bias,
because in one instance the bifactor model perfectly accommodated the population-level covariance
matrix implied by the correlated factor model. Specifically, when the data-generating model was a
simple structure correlated three-factor model it was perfectly re-expressed as a four-factor bifactor
model. Thus, while these two models represent two distinct hypothetical casual structures with
different substantive interpretations, they were also equivalent in terms of data-model fit. These
findings und