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Abstract 

Structural models of psychopathology provide dimensional alternatives to traditional categorical 

classification systems. Competing models, such as the bifactor and correlated factors models, are 

typically compared via statistical indices to assess how well each model fits the same data. However, 

simulation studies have found evidence for pro-bifactor fit index bias in several psychological research 

domains. The present study sought to extend this research to models of psychopathology, wherein the 

bifactor model has received much attention, but its susceptibility to bias is not well characterized. We 

used Monte Carlo simulations to examine how various model misspecifications produced fit index bias 

for two commonly used estimators, WLSMV and MLR. We simulated binary indicators to represent 

psychiatric diagnoses and positively skewed continuous indicators to represent symptom counts. 

Across combinations of estimators, indicator distributions, and misspecifications, complex patterns of 

bias emerged, with fit indices more often than not failing to correctly identify the correlated factors 

model as the data-generating model. No fit index emerged as reliably unbiased across all 

misspecification scenarios. Although, tests of model equivalence indicated that in one instance fit 

indices were not biased—they favored the bifactor model, albeit not unfairly. Overall, results suggest 

that comparisons of bifactor models to alternatives using fit indices may be misleading and call into 

question the evidentiary meaning of previous studies that identified the bifactor model as superior 

based on fit. We highlight the importance of comparing models based on substantive interpretability 

and their utility for addressing study aims, the methodological significance of model equivalence, as 

well as the need for implementation of statistical metrics that evaluate model quality. 

 

Keywords: factor analysis, bifactor model, fit index bias, model evaluation, Monte Carlo simulation 
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General Scientific Summary  

Latent variable models of psychopathology provide dimensional alternatives to traditional categorical 

classification systems (e.g., DSM-5 & ICD-11), with the two most popular being the bifactor and 

correlated factors models. These competing structural models of psychopathology are often compared 

via statistical indices to assess how well each model fits the same data. The results of our simulation 

study suggest that bifactor models are often erroneously favored over correlated factor models when 

the simulated data were generated by a correlated factors model with minor misspecifications. Findings 

from tests of model equivalence also clarified the conditions under which fit indices' favoring of the 

bifactor model was characterized by bias. This calls into question the common practice of relying on 

common fit statistics when comparing structural models of psychopathology.  
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Are Fit Indices Used to Test Psychopathology Structure Biased? A Simulation Study 

Current mental disorder classification systems (e.g., DSM-5; American Psychiatric Association, 

2013) have significant limitations as organizational frameworks for clinical research and intervention 

efforts. For instance, these taxonomies postulate that mental disorders are independent, categorical 

entities. However, these diagnostic categories exhibit markedly heterogeneous presentations within 

individuals (Olbert, Gala, & Tupler, 2014), have poor reliability (e.g.,  Fried et al., 2016), and display 

high rates of comorbidity (for reviews of these issues see Krueger & Markon, 2006; Trull & Durrett, 

2005). Such issues point to a notable mismatch between the model (DSM diagnoses) and the data 

(signs and symptoms as they manifest in patients; Kotov et al., 2017; Krueger & Eaton, 2015), which 

highlights the importance of investigating structural conceptualizations of mental disorders (Krueger, 

1999; Loevinger, 1957; Meehl, 2001, 2004).  

 Attempts to address these issues have led to the proliferation of new quantitative approaches for 

conceptualizing psychopathology in a data-driven way, which have highlighted a set of core 

transdiagnostic dimensions. For instance, studies have found robust evidence for two major 

transdiagnostic factors, internalizing (accounting for associations among mood and anxiety disorders) 

and externalizing (accounting for associations among disorders of antisociality, impulsivity, substance 

use, etc.) (Eaton et al., 2012; Eaton, Krueger, & Oltmanns, 2011; Forbush & Watson, 2013; Kramer, 

Krueger, & Hicks, 2008; Krueger, 1999), as well as the bifurcation of the internalizing factor into 

distress and fear subfactors (see Figure 1; Eaton et al., 2013; Krueger, 1999; Slade & Watson, 2006; 

Watson, 2009). Beginning with the factor analytic work of Achenbach and colleagues on dimensional 

syndromes (Achenbach, 1966; Achenbach, Conners, Quay, Verhulst, & Howell, 1989; Achenbach, 

Ivanova, & Rescorla, 2017), structural analyses have revealed transdiagnostic factors underlying a 

wide range of mental disorders in children, adolescents, and adults (Achenbach, Krukowski, Dumenci, 
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& Ivanova, 2005; Kotov et al., 2011; Lahey et al., 2008; Slade & Watson, 2006; Vollebergh et al., 

2001; Wright et al., 2013). 

Such structural models of psychopathology provide parsimonious summaries of observed 

patterns of psychiatric comorbidity, and as a result have gained a great deal of traction, including 

improved reliability and validity, demonstrated utility, and clinical applications (Andrews et al., 2009; 

Eaton, Rodriguez-Seijas, Carragher, & Krueger, 2015; Kim & Eaton, 2017; Rodriguez-Seijas, Eaton, 

& Krueger, 2015; Rodriguez-Seijas, Eaton, Stohl, Mauro, & Hasin, 2017; Waszczuk et al., 2017). An 

increasing number of findings in the recent literature also suggest that various models can be situated 

into an overarching hierarchy (Farmer, Seeley, Kosty, Olino, & Lewinsohn, 2013; Kim & Eaton, 2015; 

Kotov, et al., 2017; Markon, Krueger, & Watson, 2005; Wright & Simms, 2015). Indeed, such findings 

have culminated in the development of a recently proposed framework—the Hierarchical Taxonomy of 

Psychopathology (HiTOP)—that organizes internalizing, externalizing, and other transdiagnostic 

dimensions (e.g., thought disorder, somatic problems, sexual dysfunctions) into an multilevel hierarchy 

(Kotov, et al., 2017). This allows for an investigation of hierarchy as construct (Forbes et al., 2017; 

Kim & Eaton, 2015; Seeley, Kosty, Farmer, & Lewinsohn, 2011), which challenges researchers to 

think about how these factors can be integrated into comprehensive hierarchical structures (e.g., Kotov, 

et al., 2017), as well as issues of breadth and specificity (Krueger, Tackett, & MacDonald, 2016). 

Thus, progress is being made with regard to using structural approaches to delineate a quantitative 

taxonomy of psychopathology.  

Unresolved Questions for Transdiagnostic Model Comparisons 

Although evidence from structural research has converged on transdiagnostic 

reconceptualizations of mental disorder classification, fundamental questions of how best to model 

these constructs remain unclear. For instance, there is a great deal of support for two distinct 
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transdiagnostic factors, internalizing and externalizing, which tend to be sizably correlated (e.g., 

ranging from r = .4 to .7; for a review and discussion of psychopathology factor interrelations, see 

Eaton, South, & Krueger, 2010), but not so highly that these constructs are conceptually indistinct (i.e., 

factor correlations >.80 or .85 are indicative of poor discriminative validity; Brown, 2015). Even so, 

the sizable correlations among transdiagnostic factors in structural models have led some researchers 

to posit a general factor of psychopathology (Caspi et al., 2014; Lahey et al., 2012; Lahey et al., 2015; 

Patalay et al., 2015; Simms, Grös, Watson, & O'Hara, 2008; Snyder, Young, & Hankin, 2016). In an 

effort to investigate the possible presence of such a general factor of psychopathology, multiple studies 

have used a bifactor modeling approach, which specifies a general factor of psychopathology that 

saturates all mental disorders, along with specific factors, such as internalizing and externalizing, to 

capture residual covariation among indicators and reduce between-factor correlations (see Figure 2). In 

this modeling approach, the general factor is parameterized to be orthogonal to (i.e., uncorrelated with) 

the specific factors, and, most commonly, the specific factors are also parameterized to be orthogonal 

to one another (Brown, 2015; Holzinger & Swineford, 1937; Reise, 2012)—although bifactor models 

with correlated specific factors have sometimes been used (Carragher et al., 2016; Caspi, et al., 2014; 

Laceulle, Vollebergh, & Ormel, 2015; Lahey et al., 2017; Olino, McMakin, & Forbes, 2018; Patalay, 

et al., 2015; Waldman, Poore, van Hulle, Rathouz, & Lahey, 2016). Regardless of the exact 

parameterization, the bifactor and correlated transdiagnostic factors models imply very different 

conceptualizations of the latent structure of mental disorders and how transdiagnostic factors (and thus 

mental disorders) relate to one another (for a detailed discussion on the different theoretical 

implications of these models see van Bork, Epskamp, Rhemtulla, Borsboom, & van der Maas, 2017). 

In particular, the correlated factors model estimates dimensions of psychopathology from the total 

shared variance among subsets of observed indicators (e.g., fear is defined by the variance shared 
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across phobias). In contrast, the bifactor model estimates both general and specific dimensions of 

psychopathology, where the general dimension represents what is shared across all indicators, and the 

specific dimensions reflect more circumscribed patterns of shared residual variance apart from general 

psychopathology (e.g., features unique to fear once the general factor is taken into account).  

Multiple studies have compared the correlated-factor and bifactor modeling approaches to 

characterizing psychiatric comorbidity (e.g., Carragher, et al., 2016; Caspi, et al., 2014; Laceulle, et al., 

2015; Lahey, et al., 2012; Lahey, et al., 2017; Olino, Dougherty, Bufferd, Carlson, & Klein, 2014). 

These studies typically have adjudicated these competing models via the comparison of model fit 

indices (e.g., Bayesian information criterion [BIC] values). That is, researchers fit several competing 

statistical models to a given dataset, and determine via fit indices which model is superior. In Figure 3, 

we depict the number of studies published per year, between 2010 to October 2017, that compared 

correlated-factor and bifactor models of psychopathology data (N = 56; see Appendix for details). The 

notable increase in such studies after 2014, from about three per year from 2010 through 2014, to 14 

per year from 2015 to 2017, is indicative of the bifactor model’s rising popularity – and extrapolating 

from the figure, this trend seems likely to continue. Most strikingly, the bifactor model was deemed 

superior to the correlated-factor model in 95% of the studies we reviewed. This may largely account 

for the notable proliferation of bifactor models in recent structural psychopathology research. 

Bias in Model Fit Indices  

In recent years, a body of work has emerged in the modeling literature, particularly in research 

on cognitive abilities, suggesting that traditional fit indices are biased1 in favor of the bifactor model 

(Bonifay, 2017; Gignac, 2016; Mansolf & Reise, 2017; Maydeu-Olivares & Coffman, 2006; 

McFarland, 2016; Molenaar, 2016; Morgan, Hodge, Wells, & Watkins, 2015; Murray & Johnson, 

2013; Reise, Kim, Mansolf, & Widaman, 2016; Yu, 2002). Two findings are particularly relevant. 
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First, simulation studies have indicated that, even when data are generated from a known population-

level correlated factors model without misspecifications, comparative fit indices (i.e., CFI/TLI) tend to 

favor the bifactor model rather than the correlated factors model, with BIC only performing well in 

larger sample sizes (e.g., when N = 800 as opposed to when N = 200; Morgan, et al., 2015). Second, 

when model misspecifications are added (i.e., a parameter included in the population-level data 

generation model is not included in the simple structure models fit to the simulated data, such as small 

correlated residuals between indicators, resulting in misfit), these misspecifications often distort the fit 

indices’ performance toward the bifactor model (Murray & Johnson, 2013). These findings are 

concerning, given that researchers in psychopathology commonly choose models primarily based on 

fit2, a feeble practice when all candidate models tend to fit the data well.  

There are several reasons for this general insensitivity of traditional fit indices when comparing 

latent variable models. Most important are considerations of what differentiates these models, such as 

the unique rank constraints that common measurement models imply for the data (i.e., different latent 

variable models entail distinguishable patterns of constraints on the observed covariance matrix; 

Mansolf & Reise, 2017; Silva, Scheines, Glymour, & Spirtes, 2006) and differences in fitting 

propensity (i.e., a model’s average capacity to fit a variety of data patterns; Preacher, 2006). For 

example, the bifactor model has more built-in flexibility due to its extra dimension (i.e., p) and larger 

number of parameters (i.e., increased model complexity), which can accommodate minor 

misspecifications with fewer penalties to fit indices than the correlated-factor model, such as correlated 

residuals between indicators that are too small to justify inclusion in the model (Murray & Johnson, 

2013). Further, there is evidence that the bifactor model risks overfitting data by capturing random 

noise (Bonifay, 2017) and/or capitalizing on fluctuations in sampling error that give rise to chance 

intercorrelations (Murray & Johnson, 2013), as opposed to valid variability that researchers intend to 
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model (Reise, et al., 2016). These properties increase the likelihood that a bifactor model will provide 

superior fit to data relative to the less complex correlated-factor model (Reise, 2012). Such evidence 

from other fields supports the possibility that findings from structural psychopathology studies in 

which a bifactor model was identified as superior to a correlated factors model by examination of fit 

indices may be the result of fit index bias. This apparent vulnerability of fit indices warrants a direct 

examination in a simulation study reflective of common scenarios in modeling the latent structure of 

mental disorders.  

Unresolved Questions 

 Whereas prior simulation studies in the field of cognitive abilities have examined the 

limitations of using fit indices for model comparisons, this issue has not yet been thoroughly studied in 

the psychopathology literature. This is relevant because data typically encountered in structural studies 

of psychopathology differ from that in cognitive modeling in two aspects. First, cognitive ability 

models usually feature continuous data from considerably smaller sample sizes in the range of 200 to 

2,000 (Chen, West, & Sousa, 2006; Gignac, 2016; Maydeu-Olivares & Coffman, 2006; Molenaar, 

2016; Morgan, et al., 2015; Murray & Johnson, 2013), with most studies focusing on comparisons 

between the higher-order and bifactor models. By contrast, psychopathology structural studies 

typically use either dichotomous indicators (e.g., present/absent diagnoses or criteria; Caspi, et al., 

2014; Greene & Eaton, 2016; Greene & Eaton, 2017; Laceulle, et al., 2015) or positively skewed 

symptom count variables (Eaton, et al., 2011; Olino, et al., 2014). Second, these differences in 

indicator distributions warrant different estimators (cognitive: maximum likelihood; clinical: weighted 

least squares with adjusted means and variances [WLSMV], or robust maximum likelihood [MLR]). 

Thus, various model misspecifications particularly germane to structural psychopathology modeling 

scenarios (e.g., cross-loadings and correlated residuals among indicators between and across factors) 
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have not been jointly examined in previous simulation research using more than one estimator and 

sample sizes greater than 2,000. In particular, no prior simulation study has accounted for these types 

of model errors when generating sample datasets from a known correlated factors population-level 

structure, despite previous demonstrations that these common characteristics of data have the potential 

to affect fit indices with both continuous and categorical variables (Morgan, et al., 2015; Murray & 

Johnson, 2013; Yu, 2002). Only the one study by Morgan and colleagues (2015) directly assessed the 

performance of both the correlated factors and bifactor models when data were generated by a 

correlated factors model, but did not include misspecifications in their population model. While 

Murray & Johnson (2013) provide preliminary work on the topic using a higher-order structure as the 

data generating model, they limited the size of correlated residual and cross-loading parameters to 

values of .10 to .20 as they were interested in minor unmodeled complexity (i.e., the criterion for 

meaningful cross-loadings is typically >.30; McDonald, 1999; Sass & Schmitt, 2010), which might be 

too small for structural models of psychopathology (e.g., Greene & Eaton [2016] found panic with 

agoraphobia to cross-load on distress at .29 and fear at .45). 

The Present Study 

To address these questions, we simulated data from a known population-level correlated factors 

latent structure, and conducted separate analyses to include various model misspecifications. These 

data were simulated based on model parameters from one of the most seminal structural studies to date 

(Lahey, et al., 2012), which showed superiority of the bifactor model over the correlated factors model 

via fit index comparisons. In simulating data, we created data-generating correlated three-factor 

models with (1) no misspecifications, (2) a cross-loading where one item loaded on two factors, (3) a 

correlated residual between two indicators loading on different factors, and (4) a correlated residual 

between two indicators loading on the same factor (see Figure 4). Due to the interplay between sample 
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size and fit statistics/indices (Marsh, Hau, & Grayson, 2005), each misspecification was tested with 

different sample sizes and strengths of misspecification. To mimic characteristics of frequently 

modeled psychopathology data, we examined sets of positively skewed indicators (representing 

symptom counts) and sets of dichotomous indicators (representing diagnostic indicators) for which we 

used MLR and WLSMV estimators, respectively. Thus, in seeking to extend previous lines of this 

research to psychopathology, this study is novel due to its inclusion of both MLR & WLSMV 

estimators, an expanded the range of sample sizes (500 to 40,000), as well as an increased range of 

types and magnitude of population model misspecifications (.1, .3, and .5) that are based on values in 

prior clinical research (e.g. Greene & Eaton, 2016). Lastly, we assessed the extent to which our two 

competing models are statistically distinguishable by conducting tests of model equivalence between 

the bifactor model and each of the four data-generating correlated factor models (Hershberger & 

Marcoulides, 2006).   

Method 

We used the Monte Carlo simulation capabilities in Mplus (Version 7.11; Muthén & Muthén, 

1998-2015) to simulate sample datasets from a known population-level structure—a correlated three-

factor model with a variety of model misspecifications, as described below—and then examined the 

performance of two confirmatory factor analytic (CFA) models commonly used in the 

psychopathology literature: a three-factor oblique CFA, representing the correlated factors model 

(Figure 2), and a four-factor orthogonal bifactor CFA, representing the bifactor model (one general 

factor with three specific factors; Figure 3). Below, we describe how the simulated models were 

parameterized. All syntax can be found in the online supplementary materials. 

Data Generation 
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Indicators. In psychopathology research, the structure and relative fit of CFA models are often 

investigated using large epidemiological samples. Thus, to increase the relevance of our simulations to 

psychopathology studies, we based population model parameters (i.e., factor correlations and loadings) 

on standardized solutions from the correlated three-factor model delineated by Lahey and colleagues 

(2012) using data from the National Epidemiologic Survey on Alcohol and Related Conditions 

(NESARC; for a full description of the sampling frame see Grant & Dawson, 2006). This true 

correlated factors model contained two just-identified factors with three indicators each (indicators 

denoted as Y1-Y6) and one factor with five indicators (Y7-Y11), corresponding to the distress, fear, 

and externalizing factors of Lahey et al.’s model (see Figure 4 for the correlated three-factor model 

used for simulations in the present study).  

To investigate the performance of fit indices in models with categorical indicators, we 

parameterized 11 categorical indicators according to the proportion of endorsement for each in Wave 1 

of NESARC (N = 43,093): Y1 (18.2%), Y2 (4.9%), Y3 (4.5%), Y4 (1.1%), Y5 (9.5%), Y6 (5.0%), Y7 

(3.6%), Y8 (12.5%), Y9 (1.8%), Y10 (17.7%), and Y11 (1.3%). For investigation of fit index 

performance in models with skewed symptom count indicators, we parameterized continuous 

indicators with positively skewed response distributions (i.e., as typical of symptom counts in the 

general population) with skewness of 2.0 using the MplusAutomation package in R (Hallquist & 

Wiley, 2018). This level of skew is representative of real data distributions found in community-based 

mental health research (Curran, West, & Finch, 1996).  

Estimators. Robust maximum likelihood (MLR) and mean-and-variance-corrected weighted 

least squares (WLSMV) estimators were used because they are the most common methods for 

handling discrete data and are robust to non-normality (Beauducel & Herzberg, 2006; Flora & Curran, 

2004; Li, 2016; Rhemtulla, Brosseau-Liard, & Savalei, 2012; Savalei, 2014). For dichotomous 
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diagnoses as indicators, all CFA models were fit to tetrachoric correlations using WLSMV, which is 

computationally less demanding than MLR when including correlated residuals between dichotomous 

indicators. For skewed continuous indicators, all CFA models were fit to Pearson correlations using 

MLR with a maximum of 1,000 iterations, because MLR is a continuous estimation method with 

statistical corrections to standard errors and chi-square statistics for non-normally distributed indicators 

and is used frequently in psychopathology research (Lahey, et al., 2012; Lahey, et al., 2015; Olino, et 

al., 2014; Snyder, et al., 2016; Tackett et al., 2013). 

Sample size. To investigate fit index bias as a function of sample size, we simulated data for 

nine samples of varying size (N = 500; 1,000; 2,000; 3,000; 4,000; 5,000; 10,000; 20,000; 40,000), 

representing a broad range of samples used in structural equation models in the psychopathology 

literature.   

Population models and sample model comparisons. Our simulation study included the 

manipulation of four parameters (totaling 180 conditions): 2 estimators (WLSMV vs. MLR) and 

related indicator type (categorical vs. skewed continuous) x 9 sample sizes x 10 model 

misspecifications (1 correctly specified, 3 levels of factor cross-loadings, 3 levels of correlated 

residuals within-factor, and 3 levels of correlated residuals between-factors) = 180 cells. We generated 

an empirical sampling distribution of 500 virtual random samples for each simulation condition.  

For our population-level models, we simulated data from four correlated factors models, where 

one model was correctly specified and three were misspecified. We then fit two models to the data – 

and compared the fit of a bifactor versus a correlated factors model to examine fit index performance. 

The first model for simulating data was a three-factor correlated factors model with no 

misspecifications. We then investigated the impact of the three types of model misspecification in 

separate simulations (see Figure 4): (1) a cross-loading where one indicator loaded on two factors (i.e., 
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Y4 on both F1 and F2), (2) a correlated residual between two indicators loading on different factors 

(i.e., between Y3 and Y4), and (3) a correlated residual between two indicators loading on the same 

factor (i.e., between Y7 and Y8). These three types of misspecification were each represented at four 

levels of strength, with the standardized loading/correlated residual value fixed to either .00 (i.e., the 

misspecification was not present), or to .10, .30, or .50—values considered weak, moderate, and 

strong, respectively (Cohen, 1988). Each dataset included only one misspecification manipulation, 

providing a conservative test of bias, as psychopathology data are likely to deviate from simple 

structure CFA models in multiple respects. The rationale for specifying the residual correlation 

between two indicators loading on the two just-identified factors (F1 & F2) was that this would be 

most likely as these factors are most highly correlated. For the cross-loading, the proportions of 

endorsement for Y4 correspond to panic disorder with or without agoraphobia, given previous 

evidence that this composite variable includes characteristics of both distress and fear transdiagnostic 

factors in the NESARC dataset (i.e., standardized factor loading of .29 on the distress factor and .45 on 

the fear factor; Greene & Eaton, 2016).  

Model Equivalence    

We conducted tests of model nesting and equivalence, which is often difficult to evaluate in 

practice and tends to be ignored as a result (Bentler & Satorra, 2010; Henley, Shook, & Peterson, 

2006; Hershberger & Marcoulides, 2006; Maccallum, Wegener, Uchino, & Fabrigar, 1993; Raykov & 

Penev, 1999). Broadly defined, equivalent models differ in structure and substantive explanations of 

the data being described, but cannot be differentiated using measures of overall fit because they yield 

identical model-implied covariance matrices, residuals, and goodness-of-fit indices, such as chi-square 

values and descriptive fit indices (Hershberger & Marcoulides, 2006). When defined in terms of 

nesting (Bentler & Satorra, 2010), models are covariance matrix nested when they have different 
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degrees of freedom, but the implied covariance matrix under the more restricted model (e.g., correlated 

factor) can be perfectly reproduced under the more general model (e.g., bifactor). For simplicity, the 

term model equivalence will be retained throughout. To investigate model equivalence, we conducted 

separate tests for each type and level of misspecification (i.e., no misspecification, cross-loading, and 

correlated error) for the four population-level correlated factor models, with a sample size of N = 

1,000. First, we obtained the covariance matrix implied by each data-generating correlated factor 

model and then fit each resulting matrix by both a bifactor model and a correlated factor model (with 

the relevant misspecification, such as a cross-loading, if present in the population-level model). In 

other words, we sought to characterize how well the bifactor model might accommodate a population-

level correlated factor model (i.e., discrepancies due to approximation). Identification of potential 

model equivalence is important for providing a comprehensive account of the underlying reasons for 

fit indices’ favoring of a bifactor model relative to a correlated factor model: (1) pro-bifactor bias due 

to sampling error and capitalization on chance (i.e., discrepancies due to estimation), as opposed to (2) 

pro-bifactor bias due to perfectly reproducing the population covariance matrix implied by one, or 

more, of our correlated three-factor models of interest.  

Fit Index Criteria 

We examined the performance of various fit indices in correctly identifying the data as 

emerging from a population-level correlated factors model versus incorrectly identifying the bifactor 

model as superior by fit. To do so, we investigated the following fit statistics, which are common in 

psychopathology research. First, to quantify fit of the data to each fitted model we used the root mean 

squared error of approximation (RMSEA; Steiger, 1990), for which good fit is indicated by values < 

.06. Second, to measure differences between sample and estimated variance and covariances we used 

the weighted root-mean-square residual (WRMR; Muthén & Muthén, 1998-2015) for dichotomous 
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indicators, and the standardized root mean square residual (SRMR; Hu & Bentler, 1995) for 

continuous indicators. Good fit is indicated by WRMR < 1.0 and SRMR < .08. Third, to assess 

improvement in fit relative to a saturated model, we used the comparative fit index (CFI; Bentler, 

1990) and the Tucker–Lewis index (TLI). Values of CFI/TLI > .95 are common guidelines for good 

model fit (Hu & Bentler, 1999). Fourth, to compare the two models directly against each other, we 

used the Akaike information criterion (AIC; Akaike, 1987), Bayesian information criterion (BIC; 

Raftery, 1995), and the sample-size adjusted BIC (SABIC; Sclove, 1987), for which lower values are 

superior. These indices were not available for WLSMV, because they are not defined in least squares 

estimation. 

Fitted model comparisons. Models were compared in several ways. First, to approximate the 

typical approach in the literature, we averaged each fit index across all 500 simulations of each of the 

180 model parameterizations, and then we compared whether the bifactor or correlated factors model 

exhibited a superior mean value for each fit index. Situations in which means were equal for a given 

index were considered a tie, and thus as a failure of the fit index to correctly identify that the sample 

data were generated from a correlated factors model. Standard deviation (SD) units were also 

calculated for the mean values of each fit index. Second, to address the ubiquitous issue of all 

competing models fitting well in most psychopathology studies, we examined whether the size of 

differences (D) in mean TLI (> .010; Gignac, 2007) and AIC/BIC (< 10; Raftery, 1995) values met 

established criteria when either model was found to fit best. Third, we examined the percentage of 

times that fit indices correctly identified the correlated model as superior, incorrectly favored the 

bifactor model, and the percentage of ties across all 500 simulations in each study condition. The 

threshold for strong model selection performance was > 95%, because these results are intended to 

inform an applied perspective (e.g., if a researcher is comparing two models, one is correct and one is 
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wrong, what is the probability they will choose the correct model?). Lastly, as a formal comparison of 

which model was closer to the true data generating model, the Vuong test for non-nested structural 

models (Vuong, 1989) was included as a test of both AIC and BIC differences between MLR models 

using the log-likelihood for model selection (Merkle, You, & Preacher, 2016). In each simulation 

setting, we examined the percentage of significant models (p<.05) as a test of whether the correlated 

factor or bifactor model fit better than the other according to AIC and BIC. 

Results 

Model Convergence 

Across the 180,000 simulated datasets (180 cells x 500 random samples x 2 models fit to each), 

3.92% failed to converge. Nearly all models that failed to converge were bifactor solutions (i.e., 7.84% 

of bifactor models vs. 0.008% of correlated factor models). Of the 45,000 correlated factors models 

estimated using WLSMV for dichotomous indicators, 7 (0.02%) solutions did not converge, which all 

emerged from the smallest dataset with N=500. Of the 45,000 estimated bifactor models using 

WLSMV, 5,988 (13.31%) solutions did not converge; this pattern was evident for samples of differing 

size, save for when sample size was equal to 40,000 in which case all bifactor solutions converged. For 

models estimated using MLR, all models that failed to converge were bifactor solutions. Of the 45,000 

bifactor models generated for each sample size, a total of 1,069 (2.38%) solutions did not converge; 

759 (1.69%) of these were from datasets with a sample size of 500, 252 (0.56%) from a sample size of 

1,000, 44 (0.10%) from a sample size of 2,000, and 10 (0.02%) from a sample size of 3,000. Thus, as 

sample size increased, the proportion of models that successfully converged also increased. We also 

observed that non-convergence might be related to response category or the type of estimator used, as 

non-convergence was especially high for bifactor models estimated with WLSMV methods for 

dichotomous variables. When taken together, these results are consistent with previous observations 
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that higher non-convergence rates are associated with both small sample sizes and binary indicators 

(Flora & Curran, 2004).   

Model Equivalence 

For analyses involving the correctly specified correlated factor model, the bifactor model 

perfectly reproduced this implied population-level covariance matrix. So, our data-generating 

correlated factor model could be perfectly re-expressed as a bifactor model when no cross-loadings or 

correlated errors were present (i.e., the more restricted correlated factor model is nested within the 

more general bifactor model). These two models also yielded identical fit index values for CFI, TLI, 

RMSEA, and SRMR. Although, the information criteria (AIC and BIC) did favor the more 

parsimonious correlated factor model (i.e., correlated factor model yielded lower values for AIC [-16] 

and BIC [-55.26]).  

For analyses involving data-generation models with cross-loadings and correlated errors, the 

bifactor model was unable to perfectly reproduce these implied population-level correlation matrices 

(i.e., the bifactor model invariably produced some residuals). More specifically, when fit to each 

model-implied covariance matrix, the bifactor model provided a better fit for the cross-loading 

condition than the correlated error conditions, consistent with our results using mean values, percent 

correct, and the Vuong test. In all cases, as the size of the cross-loading and correlated error grew 

larger, the bifactor model showed poorer fit, especially when there was a within-factor correlated 

residual (e.g., RMSEA=.80 when this correlated residual was .5). The information criteria performed 

best across each condition (lower AIC/BIC values, ranging from -14.22 to -292.02), with TLI showing 

meaningful improvements in fit for the correlated factor model when between- and within-factor 

correlated residuals were moderate to large (improvements here were also observed for CFI and 

RMSEA values).  
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Fitted Model Comparisons  

Models without misspecification. Table 1 presents the mean values of each model fit index 

for the fitted correlated factors (left half of each table) and bifactor models (right half) when the true 

correlated three-factor model was without misspecification (see Supplemental Materials Table 1 for 

SD values). The tables are color coded, such that dark gray shaded cells indicate a model showing 

superior values to the competing model, white cells indicate a model showing inferior values to the 

competing model, and light gray shaded cells indicate ties. 

Across both MLR and WLSMV estimation methods, the SRMR and WRMR indices 

consistently favored the bifactor model. This is expected, despite these models’ equivalent covariance 

matrices, as neither index penalizes for model complexity. For the remaining approximate fit indices –

RMSEA, CFI, and TLI–most cases were ties, and, when not a tie, the bifactor model was deemed 

superior by fit more often than the correlated factors model. In contrast, the information criteria –BIC, 

SABIC, and to a lesser extent AIC–identified the correlated factor model as best fitting across all 

sample sizes. This trend is also expected as these indices include penalties for model complexity, with 

the BIC imposing the most severe penalty for less restricted models, which is particularly relevant to 

the bifactor model because it is less parsimonious than the correlated factors model.  

Models with a cross-factor loading. Next, the models were compared based on data simulated 

from a correlated factors model that contained one indicator loading on two factors (see Figure 4). 

However, this cross-loading was not modeled in either the correlated factors or bifactor models that 

were fit to the data (see Figures 1 and 2). Table 2 presents the mean value of each global fit index for 

correlated factors and bifactor fitted models across all sample sizes and levels of misspecification (see 

Supplemental Materials Table 2 for SD values).  
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 MLR. RMSEA, CFI, TLI, and SRMR all failed to correctly identify the correlated factors 

model as the true population-level model, in every single study cell, even when the cross-loading was 

small (0.1). Approximately two-thirds of these comparisons incorrectly identified the bifactor model as 

superior, while the other third indicated a tie between models; ties were mostly only present when 

misspecification was small (cross-loading of 0.1), and no ties were present when the misspecification 

was large (cross-loading of 0.5). Similarly, AIC incorrectly favored the bifactor model in all but one 

comparison. However, BIC and SABIC performed somewhat better. BIC correctly identified the 

correlated factors model in nearly every comparison, although BIC incorrectly identified the bifactor 

model as superior when sample sizes were large (N > 10,000) and the misspecification was moderate 

to large (cross-loading = 0.3 or 0.5). SABIC correctly supported the correlated factors model 

consistently when the cross-loading was small (0.1), inconsistently when the cross-loading was 

moderate (0.3), and incorrectly supported the bifactor model when the cross-loading was large (0.5) 

regardless of sample size. 

WLSMV. Similar to the MLR results, all fit indices failed to correctly identify the correlated 

factors model as the true population-level model, except in a single cell. This was true for RMSEA, 

CFI, TLI, and WRMR. Across all cells and indices, approximately half favored the bifactor model and 

half produced a tie. In every case, WRMR favored the bifactor model, and all fit indices favored the 

bifactor model when sample sizes were small. As the size of the cross-loading increased, more indices 

that were tied came to favor the bifactor model. Indeed, at a cross-loading of 0.5, TLI came to favor the 

bifactor model in 8 of 9 comparisons. 

Models with a between-factor correlated residual. We compared the fit of competing models 

when the true correlated factors model was specified to contain a correlated residual on between-factor 

indicators (see Figure 4). Table 3 presents the mean value of each global fit index across all sample 
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sizes and levels of misspecification for correlated factors and bifactor fitted models (see Supplemental 

Materials Table 3 for SD values).  

 MLR. In most cases, RMSEA, CFI, and TLI fit indices failed to correctly identify the 

correlated factors model as the true population-level model. Many fit indices provided ties between 

models, with fewer providing support for the bifactor model, and even fewer correctly providing 

support for the correlated factors model. When the correlated residual was small (r = .1), indices 

tended to produce ties, with more support emerging for the bifactor model as the residuals became 

larger; when the residual was large (r =. 5), all three indices incorrectly favored the bifactor model. 

SRMR incorrectly favored the bifactor model when the correlated residual was small, but correctly 

favored the correlated factor model only when the correlated residual was large. AIC incorrectly 

favored the bifactor model in nearly every comparison. BIC correctly identified the correlated factor 

model when the correlated residual was small, or when it was moderate and sample size was moderate; 

however, BIC incorrectly favored the bifactor model when the correlated residual was moderate at 

large sample sizes, or when the correlated residual was large. SABIC incorrectly supported the bifactor 

model when the correlated residual was moderate or large. 

WLSMV. In most cases, all fit indices failed to correctly identify the correlated factors model 

as the true population-level model. Many fit indices provided ties between models, with fewer 

providing support for the bifactor model, and even fewer correctly providing support for the correlated 

factors model. WRMR favored the bifactor model in every cell; in small samples all indices incorrectly 

favored the bifactor model. RMSEA showed the most accurate performance, although it only correctly 

identified the correlated factors model in about one-third of comparisons. 

Models with a within-factor correlated residual. We evaluated the fit of correlated factors 

and bifactor models when the true correlated factor model was specified to include a correlated 
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residual on within-factor indicators (see Figure 4). Table 4 presents the mean value of each global fit 

index across all sample sizes and levels of misspecification for both models (see Supplemental 

Materials Table 4 for SD values).  

 MLR. In stark contrast to our previous sets of results, RMSEA and TLI were more likely to 

correctly identify the correlated factor model across nearly all levels of within-factor correlated 

residuals and sample sizes. The CFI largely produced ties at small to moderate levels of model 

misspecification (r = .1 and .3), but correctly identified the correlated factors model when the model 

showed a large misspecification (r = .5). SRMR consistently favored the bifactor model incorrectly, as 

did AIC in most cases. BIC and SABIC correctly identified the correlated factor model, except for 

when sample sizes became large in the large misspecification condition. 

WLSMV. All fit indices consistently failed to identify the correlated factors model as superior. 

Approximately half of the cells produced a tie and half incorrectly favored the bifactor model. At 

larger correlated residual values (r = .5), all indices incorrectly favored the bifactor model, with 

WRMR always supporting the bifactor model at any level of misspecification. Further, WRMR began 

to deteriorate as sample size increased in the moderate to large misspecification conditions, such that 

neither model provided an acceptable absolute fit to the data (i.e., WRMR > 1.0).   

Differences in fit index and information criteria values. Using Gignac’s (2007) practical 

difference criterion of DTLI > .010, we observed that improvement in TLI values for both the 

correlated factor and bifactor models never exceed this benchmark when using WLSMV. Although, 

the bifactor model’s TLI values did approach this criterion in all misspecification conditions when 

sample size was small (N=500 and 1,000; DTLI range: .001 to .009). When using MLR, a different 

pattern emerged such that the correlated factor model TLI value consistently exceeded the bifactor’s 

(DTLI range: .016 to .024) when within-factor correlated residuals were .5 across each of our nine 
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sample size conditions, indicating minimal impact of sample size on TLI in this context (Marsh, et al., 

2005). Consistent with WLSMV results, improvements in the bifactor’s TLI values remained below 

DTLI > .010 when estimated using MLR.  

With regard to differences for the information criteria (< 10; Raftery, 1995), our MLR results 

are consistent with the pattern of mean value results in that the bifactor model only met this criterion 

for ΔBIC when sample size was large (N > 1,000) and between-factor correlated residuals or cross-

loadings were specified at moderate to large levels. Notably, when between-factor correlated residuals 

were .5, the bifactor outperformed the correlated factors model across seven sample sizes (N > 2,000). 

These improvements in BIC values also showed a marked decrease as sample size became larger 

(ΔBIC = -25.58 when N = 2,000 versus ΔBIC = -1171.40 when N = 40,000). In contrast, we observed 

only three out of 72 instances in which the correlated factor model was favored by BIC and did not met 

the criterion of less than 10, meaning BIC performed well. The degree of these differences in BIC 

values was also less extreme compared to when the bifactor was favored (ΔBIC range: -10.02 to -

69.50). Finally, ΔAIC results also mirrored our mean value results as lower AIC values were generally 

associated with the bifactor model across nearly all types and levels of misspecification. These values 

also tended to consistently decrease by more than 10 when sample size was large (> 20,000) and/or 

misspecification levels were moderate to high (ΔAIC range: -11.20 to -1240.10). There was no single 

instance in which the correlated factor model was favored by AIC and met the criterion of ΔAIC < 10 

(range: -0.52 to -9.69).  

Percent accuracy. Using a threshold of > 95% for strong performance across all 500 

simulations in each misspecification condition, we examined the percentage of times that fit indices 

were able to correctly identify the correlated model as superior, incorrectly favored the bifactor model, 

and the percentage of ties (see Supplemental Materials Tables 5 through 12 for detailed results). For 



SIMULATION STUDY OF FIT INDEX BIAS	 24 

models estimated using WLSMV, none of our simulated results met the specified benchmark. For 

MLR, we observed a substantial decrease in the number of times fit indices were able to identify the 

correct model relative to the mean value results. Specifically, BIC and SABIC performed well across 

all study conditions until the underlying model contained misspecifications of .3, while AIC never met 

our accuracy threshold. Regarding MLR’s fit indices (RMSEA, CFI, TLI, and SRMR), no index met 

the threshold when the underlying model contained a cross-loading or a between-factor correlated 

residual. However, RMSEA & TLI did perform well when a within-factor correlated residual was 

present, but only in samples > 10,000 when the misspecification was small (.1) and when 

misspecifications were moderate to large (.3 and .5). 

Vuong test. When the Vuong test for AIC and BIC was applied to our simulated continuous 

data, we found results that were consistent with the observed pattern in both our mean value and 

percent accuracy results (see Supplemental Materials Tables 13 through 16 for detailed results). The 

Vuong test for AIC was never able to identify the fitted correlated factors model as being closer to the 

true data generating model. For BIC, the Vuong test performed well when the underlying model 

contained small misspecifications (.1), However, test performance for BIC steadily decreased across 

all study conditions once model misspecifications reached .3.  

Discussion 

Several studies on the structure of psychopathology have applied both correlated factors and 

bifactor models. When these two models’ fit indices have been directly compared, they have 

consistently favored a bifactor representation of observed comorbidity patterns (i.e., in 95% of 

studies). However, research from other fields suggests that traditional fit statistics are biased in favor 

of the bifactor model (e.g., Bonifay, 2017; Gignac, 2016; Morgan, et al., 2015; Murray & Johnson, 

2013). The aim of the current study was to extend this line of research to common scenarios of mental 
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disorder structural modeling by conducting a test of potential bias that is specific to the bifactor model 

of psychopathology. To do this, we simulated data from known population-level correlated factors 

models, with different types and degrees of model misspecifications, and ascertained to what extent fit 

indices identified a correlated factors model as data-generating model. Second, we conducted 

complementary tests of model equivalence by evaluating whether the bifactor model could perfectly 

reproduce the population covariance matrices implied by our each the four correlated factor models of 

interest (i.e., population-level simple structure, a between-factor cross-loading, a between-factor 

correlated residual, or a within-factor correlated residual).  

General Fallibility of Fit Indices  

Overall Findings from Sample Model Comparisons Our study revealed different types of 

pro-bifactor model fit index bias across a wide range of modeling scenarios. When misspecifications 

were present, we observed a frequent failure of all fit indices to identify the correlated factors model as 

the underlying population-level model. This was the case across estimators and sample sizes. In only 

one scenario—the use of the MLR estimator with a within-factor correlated residual—did three fit 

statistics (RMSEA, TLI, and BIC) provide consistent support for the correct correlated factors model 

from which the data were generated. Although, even in that scenario, most other fit indices performed 

inconsistently, with some correctly identifying the correlated factors model when model 

misspecifications were small (AIC) or large (CFI), and when sample sizes were small or large, 

depending on the index. Furthermore, performance decreased for all fit statistics in each study 

condition when assessed according to both the percentage of correctly identified models and the Vuong 

test. This general pattern of fit indices’ insensitivity to the population-level model was evident despite 

this study’s conservative tests of model misspecifications (i.e., including only one misspecification at a 

time).  
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Overall, larger samples sometimes improved performance, but generally led to worse 

performance, especially for BIC and other information criteria. Further, BIC and SABIC demonstrated 

increasing pro-bifactor bias as a function of increasing levels of model misspecification, a trend that 

was evident across all types of model fit comparisons. Previous research has shown that the bifactor 

model can better account for unmodeled complexity due to its less parsimonious structure relative to 

the correlated factors model (Murray & Johnson, 2013). Unfortunately, even for fit indices that have 

stronger penalties for model complexity and that favor parsimony (e.g., BIC and, to a lesser extent, 

AIC; Burnham & Anderson, 2004), these penalties proved inadequate to correctly identify a correlated 

factors model in simulated data with misspecifications likely to be present in psychopathology 

modeling scenarios (Greene & Eaton, 2016; Rodriguez-Seijas, et al., 2015). Thus, while BIC, SABIC, 

and AIC penalize for model complexity in the form of greater numbers of freely estimated parameters, 

they do not penalize the bifactor model for additional forms of complexity that go beyond the number 

of parameters (i.e., functional form, defined as the way a model’s equations specify and combine 

parameters and variables; for an extended discussion see Bonifay, 2017). This shortcoming results in 

the possibility that more complex models may be deemed as “best fitting” by virtue of their ability to 

accommodate minor misspecifications that are not meaningful (i.e., high fitting propensity; Bonifay, 

2017; Bonifay, Lane, & Reise, 2016; Reise, et al., 2016). Thus, a balance is needed between goodness-

of-fit and structural complexity. One way to achieve this balance is through the use of minimum 

description length (MDL) based approaches (e.g., see Markon & Jonas, 2016), which take into account 

both the number of freely estimated parameters and the model’s functional form in order to help 

researchers arrive at relatively simple models that provide adequate, albeit less than perfect, fit to the 

data (Bonifay, 2017).  
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There was a notable trend for some fit indices to be better at correctly selecting the correlated 

factors model when the population model contained a within-factor correlated residual (i.e., fit index 

performance improved as levels of model misspecification increased). In other words, the best way we 

found to identify the correct general model was to parameterize increasingly incorrect models (e.g., 

TLI values for the correlated factor model only meaningfully exceeded the bifactor’s when within-

factor correlated residuals were .5). Conversely, this pattern also indicates that the bifactor model is 

especially good at accommodating misspecifications that span the specific factors (i.e., between-factor 

correlated residuals and cross-loadings), which can be captured by the general factor as common 

variance, while it is less effective at accounting for misspecifications that fall within specific factors. 

The issue of model misspecification is especially relevant to structural researchers in that the size of 

the within- and between-factor correlated residuals that we modeled appear quite reasonable and likely 

common. That is, correlations among residuals of the sizes rs = .1, .3, or .5 are not uncommon in 

structural investigations — particularly in studies that use multiple scales from a single measure to 

capture different constructs, which introduce shared method variance and increase the likelihood that 

corresponding indicators show correlated residuals. Correlated residuals may also emerge when 

disorders have similar symptoms. While most studies do not report residual correlation matrices 

because adequate fit is obtained without modeling these correlations, Rodriguez-Seijas and colleagues 

(2015) found it necessary to include two correlated residuals in a correlated-factor model between (1) 

major depressive episode and dysthymia (r = .7) and (2) alcohol use disorder and drug use disorder (r 

= .8), likely due to similar indicator content. The size of these correlated residuals exceeded even the 

largest correlated residual in the present study, suggesting the size of model misfit may be greater in 

real-world scenarios.   
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The observed pattern of non-convergence for bifactor models is not unique to the present study. 

Previous simulation studies have also reported a negative association between non-convergence of 

bifactor models and sample size (Maydeu-Olivares & Coffman, 2006; Morgan, et al., 2015; Murray & 

Johnson, 2013), especially in the context of binary indicators (Flora & Curran, 2004). Although, non-

convergence problems may also be attributed to the bifactor’s orthogonal parameterization. That is, we 

did not allow the bifactor’s specific factors to be correlated (as the model is commonly parameterized 

in psychopathology research), which might reduce convergence problems due to misspecification, low 

factor loadings, or small sample sizes. Nonetheless, such correlated specific factors not only violate the 

classic representation of an orthogonal bifactor model (Spearman, 1904), but also further complicate 

inferences drawn from the bifactor model by changing the meaning of p and suggesting the presence of 

additional common variance beyond p that is contributing to the specific factor’s interrelatedness (Eid, 

Geiser, Koch, & Heene, 2017; Reise, 2012). Therefore, when considering whether to allow for oblique 

bifactor solutions, it is necessary to carefully weigh the advantages (e.g., higher convergence rates and 

better approximations of bifactor simple structure; Jennrich & Bentler, 2012) and disadvantages (e.g., 

oblique solutions are potentially less stable than orthogonal solutions; Lorenzo-Seva & Ferrando, 

2018) before adopting an oblique modeling strategy.  

Model Nesting and Equivalence. Discussion and identification of equivalent models is 

infrequent, despite the methodological significance of this issue in fitted model comparisons (Bentler 

& Satorra, 2010; Henley, et al., 2006; Hershberger & Marcoulides, 2006; Maccallum, et al., 1993; 

Raykov & Penev, 1999). Equivalent models arrive at the same model-implied covariance matrix and 

yield equivalent fit index values, but are not equivalent in structure (Hershberger & Marcoulides, 

2006). Inferences based on data-model fit are severely restricted for equivalent models, because one 

model cannot be supported without all equivalent models being supported. Limitations are also placed 
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on inferences about the causal relations implied by a hypothesized model as the size and direction of a 

model’s structural relations, and its external correlates, depend on which equivalent model is selected.  

We conducted tests of model equivalence by evaluating discrepancies between the population 

covariance matrices implied by each of the four correlated factor models and the bifactor model-

implied covariance matrix when it was fit to a population covariance matrix. These supplementary 

analyses indicated that fit indices' favoring of the bifactor model was not always characterized by bias, 

because in one instance the bifactor model perfectly accommodated the population-level covariance 

matrix implied by the correlated factor model. Specifically, when the data-generating model was a 

simple structure correlated three-factor model it was perfectly re-expressed as a four-factor bifactor 

model. Thus, while these two models represent two distinct hypothetical casual structures with 

different substantive interpretations, they were also equivalent in terms of data-model fit. These 

findings underscore the idea that CFI, TLI, RMSEA and SRMR fit-based comparisons between our 

three-factor correlated factor and four-factor bifactor models are not useful exercises in the unlikely 

situation that a population-level model contains no cross-loadings or correlated errors. In these cases, 

our simulation study with data generated from a pure correlated factor model implies that fit indices 

are not biased toward the bifactor model—they are favoring the bifactor model, albeit not unfairly. The 

information criteria, however, consistently selected the more parsimonious structure in our tests of 

model equivalence. As such, AIC and BIC appear to be more appropriate than CFI, TLI, RMSEA, and 

SRMR for situations where two, more and less restricted, models are bound to arrive at the same 

covariance matrix. These conclusions are reflected in the mean value and percent correct results in 

which RMSEA, CFI, and TLI mostly produced ties between the two models when the population-level 

correlated factor model was perfectly specified. In contrast, the information criteria helped identify 
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improvements in parsimony as they tended to select the simpler model under no misspecifications—an 

expected result given the penalty these indices impose on less restricted models.  

In all other cases where the data-generating model contained cross-loadings and correlated 

errors, the bifactor model did not perfectly fit the population-level covariance matrix implied by the 

correlated factor model. Therefore, for simulation study conditions involving misspecified correlated 

factor models of interest, every measure of fit—CFI, TLI, RMSEA, SRMR, AIC, BIC, and SABIC—

did show some susceptibility to pro-bifactor bias. These instances of pro-bifactor bias for fit index 

mean values and percent correct appear to be due to our bifactor model’s additional fourth dimension 

erroneously accommodating misspecifications by (re)packaging these unmodeled complexities as 

common variance, even though they are not. This is not a desirable feature. Notably, several common 

fit indices tended to be biased in favor of the bifactor model when the population-level correlated 

factor model contained between-factor cross-loadings or trivial between- or within-factor correlated 

residuals (r = .1), a result consistent with prior work (Murray & Johnson, 2013; Yu, 2002). This was 

the case for RMSEA, CFI, TLI, WRMR, and SRMR, which are all measures that provide information 

on the lack of overall model fit to the data, not the degree to which a model is useful (Revelle & Wilt, 

2013).  

Overall, we take these findings to indicate that the bifactor model should not fit any better than 

the correlated factor model, other than its ability to better account for misspecifications, which is a 

statistical feature, rather than a substantive argument for utilizing a bifactor model. Regardless, in 

applied scenarios, fit indices are not capable of identifying the true data-generating mechanisms 

because these mechanisms are always unknown. Thus, the extent to which one of two equivalent, or 

nigh-equivalent, models can provide corroborating evidence for a theory depends on whether 

competing hypotheses posed by the equivalent alternative can be ruled out on theoretically substantive 
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grounds (Hershberger & Marcoulides, 2006), such as whether the core assumptions underlying a 

structural representation are aligned with substantive considerations for classifying psychopathology.  

Implications 

It is rare to find a poor fitting model in most psychopathology studies, yet the use of fit indices 

and information criteria is likely to continue for the foreseeable future. This dilemma highlights the 

difficulty in achieving improvements in fit that are sufficiently large to warrant the estimation of 

additional parameters, as discussed in previous simulation studies (Gignac, 2016; Murray & Johnson, 

2013). Even so, the literature remains unclear about how large of a difference constitutes “enough 

improvement,” speaking to the complications with generating a golden rule that is applicable to every 

study and/or dataset. In the present study, better TLI values (> .010) for the correlated factor model 

only occurred in the presence of moderate to large within-factor correlated residuals. When judged by 

the criterion of ΔAIC < 10, lower AIC values were associated with the bifactor model, across nearly all 

samples sizes and types/levels of misspecification. However, the correlated factors model was able to 

consistently outperform the bifactor by ΔBIC < 10, except for when sample size was large and/or large 

misspecifications spanned across the specific factors, similar to our mean value results. These results 

add to previous discussions about these difference criteria for TLI and AIC/BIC values not being 

substantial enough for these statistics to overcome pro-bifactor bias (Murray & Johnson, 2013). The 

observed trend for TLI may be interpreted as evidence that sufficiently large differences in fit are not 

to be expected (Gignac, 2016), especially in applied research where candidate models tend to all fit 

well, again highlighting the central role of subjective judgment in structural modeling practices. 

The inherent bias of fit statistics in favor of the bifactor model is due to a combination of its 

model characteristics, which, as a consequence, increase its ability to accommodate unmodeled 

complexity in the data and/or its propensity to overfit by capitalizing on chance fluctuations in the data 
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that arise from sampling error (i.e., irrelevant departures from the model; Bonifay, 2017; Bonifay, et 

al., 2016; Reise, et al., 2016). These two issues are most distinguishable in scenarios where our data 

generating model contained a cross-loading or correlated residual. There, we observed increased pro-

bifactor bias across all fit indices, including deteriorated performances of BIC and SABIC, as a 

function of increasing levels of misspecification (.5) and sample size. These results suggest bias in fit 

is due to model misfit rather than random noise, following similar lines of simulation research in which 

simple structure CFA models are misspecified (i.e., applied to data containing unmodeled cross-

loadings and/or correlated residuals; Mansolf & Reise, 2017; Murray & Johnson, 2013). As a 

consequence, the mistaken inference of bifactor superiority seems to be driven by the general 

dimension’s erroneous accommodation of misspecifications through capturing theoretically 

unexplained variance and re-packaging it as common variance, even though it is not.  

It is worth noting that in applied research, all CFA models are misspecified approximations of 

the data they summarize (Browne & Cudeck, 1993; Cudeck & Henly, 1991; MacCallum & Austin, 

2000). That is, in contrast to the population models created in Monte Carlo simulation studies, real 

world population model characteristics are always unknown (i.e., "there are no true models to 

discover"; Cudeck & Henly, 2003). This dilemma means that “misspecifications”–discrepancies 

between the tool doing the estimating and reality–are to be expected, at least if we assume that the 

population model is not a simple structure model. Therefore, when evaluating goodness of fit indices 

for a series of models with increasing degrees of fitting propensity, researchers should not over-

interpret models that are more highly parameterized compared to simpler models. Measures of fit are 

more likely to favor structures with more parameters, especially when sample sizes are large (Cudeck 

& Henly, 1991). In this way, a correlated factor model could also be easily over-interpreted compared 

to a more restrictive unidimensional model in a circumstance where unmodeled complexities give rise 
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to an unreliable factor based on repeated item content within indicators (i.e., when associations 

between some indicators are better explained by correlated residuals methods effects; Brown, 2015), 

instead of a substantively useful latent construct (e.g., externalizing). Importantly, our simulation 

scenarios were designed to represent misspecifications that should have no bearing on conclusions 

about the validity of a bifactor model’s general factor of psychopathology. As such, our results should 

be understood as a reflection of a broader statistical issue: the fallibility of fit indices in judging the 

validity of structural representations (Browne & Cudeck, 1993; Maydeu-Olivares, 2017; Preacher & 

Merkle, 2012). Utility considerations are most important for model selection decisions.  

Another implication of our results extends to fit indices’ frequent selection of the bifactor over 

the higher-order factor model. The higher-order and correlated factor models are equivalent when three 

lower-order factors are present (in which case both models may be, but are not always, nested within a 

bifactor model; Mansolf & Reise, 2017). Hence, our pro-bifactor fit index bias results can be viewed as 

yet another instance in which the bifactor is erroneously selected as superior when it is fit to simulated 

data generated by a misspecified version of a higher-order model (Gignac, 2016; Maydeu-Olivares & 

Coffman, 2006; Molenaar, 2016; Morgan, et al., 2015). As described by Mansolf and Reise (2017), 

this outcome is related to the bifactor’s specific rank constraints that it makes on the data. Thus, 

comparisons of the unique rank constraints implied by these common measurement models, plus the 

degree to which they are violated, provide valuable insights into what distinguishes these models and 

how they may come to yield different, or even equivalent, fits to the data. For example, within each 

specific factor in the higher-order model, the ratio of specific factor loadings (for observed variables) 

to general factor loadings (indirect effects) are proportional (Yung, Thissen, & McLeod, 1999). 

Therefore, the bifactor and high-order factor models will also display equivalent fit to the data when 

the bifactor’s ratio of general to specific factor loadings are also proportional. However, this 
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proportionality condition for the bifactor’s general to specific factor variance is rarely achieved in real-

life modeling scenarios, leading to frequent observations of pro-bifactor fit index bias due to these 

common violations of rank and proportionality constraints (Gignac, 2016; Mansolf & Reise, 2017; 

Molenaar, 2016). Model constraints provide a more technical alternative to understanding CFA 

models, with distinct implications for conceptualizing structure, and evidence is accruing for their 

contribution to our understanding of when and why the bifactor model will fit better relative to more 

parsimonious models (for a detailed exposition of these issues see Mansolf & Reise, 2017).  

Interpretability. In order for a model to be a useful representation of diagnostic comorbidity3, 

it must also be falsifiable. To quote Sir Karl Popper, “falsifiability is the criterion of demarcation” 

between science and non-science (Popper, 1963). Therefore, if a bifactor theory can easily 

accommodate all heretofore published states of affairs based on fit, then there is no observable 

difference between that theory’s verisimilitude or falsity (for a discussion of problems associated with 

overreliance on fit indices in testing quantitative theories, framed in terms of the philosophy of science 

and the history of psychology see Roberts & Pashler, 2000). By this logic, theories that posit a general 

liability of psychopathology do not score well on the criterion of falsifiability given the high 

probability of such models outperforming more restrictive models on measures of fit in data across 

various samples, measures, and methods (e.g., Arias, Ponce, Martínez-Molina, Arias, & Núñez, 2016; 

Carragher, et al., 2016; Caspi, et al., 2014; Castellanos-Ryan et al., 2016; Laceulle, et al., 2015; Lahey, 

et al., 2015; Martel et al., 2017; Olino, et al., 2014). This is not to say that the correlated factors model 

is clearly falsifiable as they also tend to fit most psychopathology datasets well; however, it is 

troubling if the bifactor model’s features allow it to outperform simpler models, despite concerns about 

its relative lack of parsimony and questions about the interpretability of its latent factors (Bonifay, et 

al., 2016; Widiger & Oltmanns, 2016). As such, the most pressing question currently is how to proceed 
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with evaluating perhaps unfalsifiable explanations for the superiority of any competing structural 

representation4 (i.e., explanations for a correlation matrix’s positive manifold are difficulty to falsify; 

Van Der Maas et al., 2006).  

When the criterion of substantive interpretability is used for adjudication of factor models, the 

bifactor model’s general factor has various interpretations (Lahey, Krueger, Rathouz, Waldman, & 

Zald, 2016), which are not generally as clear as those of the correlated factor model. For instance, one 

study demonstrated that the bifactor model’s general factor of psychopathology correlated very 

strongly with the correlated factors models’ internalizing and distress factors—more strongly than with 

the bifactor model’s purported distress factor correlated with the correlated factors model’s distress 

factor (Kim & Eaton, 2015). This raises the possibility that the bifactor’s distress factor is being 

mislabeled due to a misinterpretation of the residual variance captured by this specific factor after 

controlling for the general factor (i.e., a nuisance factor that does not represent a meaningful construct; 

DeMars, 2013). Other studies have found the general factor to be closely linked to thought disorder 

symptoms such that increasing levels of general psychopathology may correspond to increased risk for 

experiencing disordered thought processes (Caspi, et al., 2014). Hence, while the general factor is 

robustly related to external correlates and future outcomes (Lahey, et al., 2012; Lahey, et al., 2016), the 

utility of the each factor within the bifactor model may vary, just as the definition of this general factor 

is liable to vacillate from study to study.  

Another reason the bifactor model’s specific factors are often more difficult to interpret than 

the correlated factor internalizing-externalizing dimensions due to substantially attenuated loadings 

(Caspi, et al., 2014; Gomez, Stavropoulos, Vance, & Griffiths, 2018; Laceulle, et al., 2015; Olino, et 

al., 2014), which result in poor factor identification and irregular factor loadings (e.g., the distress 

factor tends to be a unipolar depression factor, due to low loadings on GAD; Greene & Eaton, 2017; 
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Kim & Eaton, 2015; Lahey, et al., 2012), and sometimes opposite effects (e.g., childhood externalizing 

problems being protective against future pure internalizing problems; Caspi, et al., 2014). Other 

unexpected solutions are also common, such as when strongly indicated factors in the correlated 

factors model show an appreciable decrease in magnitude when modeled as specific factors in a 

bifactor model (e.g., distress and internalizing disorders in studies with adults, children, and 

adolescents; Lahey, et al., 2012; Gomez, et al., 2018), or vanish altogether when indicators 

simultaneously shift and strongly load on the general factor instead (e.g., diagnostic variables with 

previously strong loadings on the thought disorder factor in a correlated factor model only loaded on p 

in the bifactor; Caspi, et al., 2014). This pattern of results contradicts one of the major reasons for 

considering a bifactor approach—modeling construct-relevant multidimensionality (Morin, Arens, & 

Marsh, 2016)—when indicators are expected to reflect both p & specific factor variance. Such 

inconsistencies have led to investigations aiming to clarify the conditions under which the bifactor 

model is justified by researchers’ study objectives, as well as alternative approaches to defining these 

models a priori (for a close examination of anomalous results and suggestions for addressing 

application issues with bifactor models see Eid, et al., 2017; Eid, Krumm, Koch, & Schulze, 2018; 

Heinrich, Zagorscak, Eid, & Knaevelsrud, 2018).  

In the bifactor context, an internalizing dimension reflects the shared pathology among anxiety 

and mood disorders after partialling out what these conditions share with all other diagnoses, which is 

further complicated when some studies allow the bifactor model specific factors to correlate 

(Carragher, et al., 2016; Caspi, et al., 2014) and others do not (Gomez, et al., 2018; Lahey, et al., 2012; 

Lahey, et al., 2015), such that the meaning and external correlates of these dimensions tend to differ 

notably across studies. These findings demonstrate that specific factors from bifactor solutions are not 

isomorphic with their counterparts from correlated-factor models. Thus, there is a need for a clear 
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understanding of the specific factors’ properties in matters of substantive interpretation and, more 

broadly, the use of alternative statistics for evaluations of model quality and latent factors’ reliabilities 

(e.g., explained common variance [ECV], construct replicability [H], and omega as seen in Gomez, et 

al., 2018; Rodriguez, Reise, & Haviland, 2016a, 2016b). 

Finally, we interpret the results of this study as critical of the use of fit indices to demonstrate 

the bifactor model of psychopathology offers a superior representation of psychopathology relative to 

other competing models—not that the bifactor model of psychopathology itself is without worth. 

Indeed, we believe the bifactor model likely has notable utility and believe other (non-fit-based) 

methods of examining and adjudicating models will support the bifactor model to some extent 

(Gomez, et al., 2018; Lahey, et al., 2016; Oltmanns, Smith, Oltmanns, & Widiger, 2018). Thus, while 

the bifactor approach to decomposing variance into common and unique sources might be difficult to 

interpret from some perspectives (e.g., clinically meaningful and inter-related constructs), it may fit 

well with other perspectives (e.g., psychiatric genetics, psychometric scale development, etc.) and 

show utility for various purposes (e.g., specific factors statistically control for general factor variance). 

When aims of modeling call for such forms of variance decomposition, the bifactor model is a helpful 

tool. The correlated factors model is also consistent with the general factor that presumably underpins 

factor intercorrelations at the level of broad spectra (Kotov, et al., 2017). If the goal is to model a 

general factor and assess questions of specificity, researchers may find Goldberg’s method helpful, 

which treats hierarchy as construct (Eaton, in press; Forbes, et al., 2017; Goldberg, 2006; Kim & 

Eaton, 2017).  

Moving forward. There are a range of underused approaches for evaluating the fit of 

competing models with varying levels of complexity. First, cross-validation methods, which can be 

employed for estimations of overall error, have been shown to be more useful for model selection than 
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several fit indices (e.g., for a study based on both real and simulated data see McFarland, 2016). Cross-

validation is especially helpful for addressing the problem of overfitting in covariance structures due to 

capitalization on chance variance/sample characteristics (Cudeck & Browne, 1983; McFarland, 2016); 

and, using a single sample, the quantity of overall error can also be approximated via the expected 

value of the cross-validation index (ECVI; Browne & Cudeck, 1989; Browne & Cudeck, 1993). Such 

practices improve precision for distinguishing among discrepancies due to errors of approximation 

(reflective of the difference between population versus model-implied covariance matrices when a 

model is fit to the population covariance matrix) versus discrepancies due to errors of estimation 

(reflective of the difference between the sample versus model-implied covariance matrices). In this 

context, the former would be indicative of problems with sampling error variability and/or the 

bifactor’s capitalization on chance, while the latter would point to the bifactor’s built-in capacity to 

better accommodate misspecifications relative to the correlated factors model. Second, the Vuong test 

for non-nested models compares models' fits to select which is likely closer to the underlying data 

generating model and therefore best (Merkle, et al., 2016). The Vuong test is specific to information 

criteria and has shown to be useful for model selection in recent applications (Anderson et al., 2018). 

Third, explorations of data using exploratory methods are valuable for can help researchers ascertain 

the degree to which confirmatory models may misfit the data (i.e., rather than through post-hoc 

assessments of fit and modification indices; Reise, 2012), and can be further enhanced through the use 

of cross-validation samples. For example, factor structure stability can be evaluated by comparing 

results across various rotation criteria (Schmitt & Sass, 2011), and/or the extent to which factor 

structures shift across both exploratory and confirmatory methods (Goldberg & Velicer, 2006). Lastly, 

exploratory structural equation modeling is a powerful method for performing confirmatory tests of a 
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priori latent structures, providing an attractive alternative to overly restrictive CFA frameworks (i.e., 

due to the emphasis on simple structure in CFA; Marsh, Morin, Parker, & Kaur, 2014)  

Adoption of alternative methods for adjudicating between models also hinges on the need for 

additional information beyond whether a model’s fit indices exceed a specified threshold (e.g., CFI 

>.95). In this way, fit indices function as dichotomous decision-making heuristics akin to significance 

tests using p<.05, which researchers use as rules for whether they should continue pursuing a specific 

model. However, fit indices do not supply information directly relevant to each models’ substantive 

interpretability nor the subsequent development of the competing theories accommodated by these 

models. As such, future studies may benefit from the incorporation of additional model statistics that 

can be used as tests of researchers’ conceptualizations of the theoretical constructs to be modeled. 

After all, structural relations among latent constructs are what underlie decisions to fit a hypothesized 

model to the data. One such statistic is the coefficient H, a reliability estimate of latent constructs in 

SEM that increases with the strength of each observed indicators’ factor loading and, as a 

consequence, their relative contributions to defining these constructs (Hancock & Mueller, 2001). With 

regard to p, previous research has shown that it is reasonable to expect higher H values compared to 

the specific factors (Gomez, et al., 2018), which tend to be less stable across samples. This highlights 

the importance of indexing measurement quality (i.e., relations between observed variables and factors 

in measurement models) when gauging the inferred latent constructs themselves. Measurement quality 

is especially important in light of a paradoxical relationship described by Hancock and Mueller (2011) 

wherein poor measurement quality is associated with better fit index performance for structural models 

(due to space limitations we refer the reader to these author’s article for details on how an additional 

modeling step can allow for evaluation of structural models independent of their measurement 

models). Taken together, such demonstrations of structural model quality can provide valuable 
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information for hypothesis development and testing, while also broadening the range of possibilities 

for addressing the deleterious effects of model misspecification on fit index performance.  

Lastly, after judging the acceptability of model fit and parameter estimates’ strength and 

interpretability, models can then be subjected to more “risky” tests in the spirit of Meehl’s (1978) 

Popperian assertion that “[a] theory is corroborated to the extent that we have subjected it to such risky 

tests; the more dangerous tests it has survived, the better corroborated it is.” These tests are best 

conducted in the later stages of construct validation when substantive theory and the accumulation of 

evidence support a priori predictions about latent structures (Brown, 2015). For instance, much can be 

learned from continued examinations of competing models’ associations with external criteria,  multi-

trait multi-method analyses of both p and specific factors’ construct validity, multiple-group analyses 

of the generalizability of these latent constructs to distinct demographic groups (e.g., Greene & Eaton, 

2017; Tackett, Daoud, De Bolle, & Burt, 2013), and the development of comorbidity over time (e.g., 

Murray, Eisner, & Ribeaud, 2016).  

Limitations 

Similar to all Monte Carlo simulations, our findings may not generalize beyond the chosen set 

of conditions studied here. This is because the 180,000 models we fit to simulated datasets cover only 

a small part of the whole model parameter space. For instance, we did not manipulate model 

parameters beyond misspecifications (e.g., we did not manipulate number of indicators per factor or 

numbers of factors). We also did not test models where the strength of interfactor correlations varied 

within the correlated factors model nor the impact of multiple misspecifications being present 

simultaneously. Rather, we aimed to provide an illustration of fit index bias in situations that likely 

occur in many datasets, and hope that future studies will extend our manipulations in various 

directions. Prior simulation work has shown that the interpretability of common fit indices, such as 
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RMSEA and CFI, is hindered by decreases in factor loadings and corresponding increases in unique 

variances, regardless of whether models are simple or complex (Heene, Hilbert, Draxler, Ziegler, & 

Bühner, 2011). This is an important avenue for further investigation as ongoing efforts to assess 

differing aspects of these competing models are warranted to the extent that they are apropos of 

patterns of findings in applied research (e.g., lower loadings for the bifactor’s specific factors relative 

to correlated factors). Another consideration is that, while we included a large number of sample size 

conditions, we did not investigate sample sizes with fewer than 500 participants, which may have 

produced differing results given the particularities of each fit statistic’s relationship to sample size 

(Marsh, et al., 2005). We made this decision because studies that undertook bifactor modeling have 

generally had sample sizes at least that large. Lastly, our simulated data was drawn from one 

population-level model, the correlated-factor model, and future research should test the extent to which 

competing models are able to fit data from alternative population-level structures, such as a true 

population-level bifactor structure. We did not examine true bifactor structure as we expected superior, 

unbiased performance of the bifactor model under such a scenario to be a foregone conclusion 

(Gignac, 2016; McFarland, 2016; Morgan, et al., 2015).  

Conclusions 

This study was designed to inform future research on the p-factor directly. Our interpretation of 

the results provides cautionary evidence against over-interpretation of fit statistics for model selection 

decisions in general. Our study suggests that the numerous structural studies supporting the bifactor 

model over the correlated factors model based on fit should be interpreted as inconclusive, given our 

demonstration that all fit indices showed pro-bifactor model bias. Thus, future psychopathology 

modeling scenarios should not rely solely on which model provides the best fit to the data. More 

important are considerations of data characteristics and clear statements about substantive comparison 
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criteria (Cudeck & Henly, 1991), including the degree to which the theoretical assumptions underlying 

bifactor vs. correlated-factor representations converge with theories for classifying psychopathology 

(i.e., misinterpretation can be avoided by taking the purpose of the model into account; Bonifay, et al., 

2016; DeMars, 2013; Maydeu-Olivares, 2017; Morgan, et al., 2015; Murray & Johnson, 2013).  

Along these lines, it must be recognized that biases in relative fit indices do not invalidate 

favored models or imply that alternative models are more valid. Converging lines of evidence support 

the utility of a general factor of psychopathology, as this dimension can be postulated even without 

reference to superior fit. While alternative methods and statistics for model acceptability are available 

(e.g., Vuong test, cross-validation, coefficient H), the choice between correlated factors (or higher-

order) and bifactor models can be made on practical grounds where the study aims justify the modeling 

approach. The former is most effective at identifying clusters of variables that are positively 

interrelated, whereas the latter is most effective at decomposing indicators’ variance into that which is 

shared versus unique.   

Author Note 

Limited previews of this study’s hypotheses and results were presented on two occasions. First, 

preliminary findings were discussed with HiTOP coauthors at the 2017 HiTOP meeting in Denver, 
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Footnote 

1 Throughout this manuscript, the term bias is referred to in a broad sense. That is, bias 

connotes a systematic distortion of fit statistics due to specific properties of the models they are used to 

evaluate.  

 2 A wide range of methods and statistics exist for assessing models fitted to data. Within the 

context of this article, we refer to the term fit as conceptualized through the use of traditional fit indices 

and information criteria in order to maintain consistency with similar lines of previous research.  

 3 We view the purpose of these structural models is purely representational and aimed at 

informing current conceptualizations of how psychopathology is classified, assessed, treated, and 

researched due to the known limitations of our extant classification rubrics. In contrast, the National 

Institute of Mental Health’s Research Domain Criteria (RDoC) are explicitly directed towards the 

purposes of mapping/identifying etiological components and processes. As this discussion is out of 

scope for this article, we refer the reader to the work of Clark, Cuthbert, Lewis-Fernández, Narrow, 

and Reed (2017) for a recent exposition on the different utilities associated with classification models 

versus RDoC.  

4 For recent work that suggests such explanations can be falsified with developmental data, we 

refer readers to investigations by Kievit et al. (2017) and Hofman et al. (2018) on mutualism of 

cognitive abilities in latent change models. These studies show that G can be separated out from 

mutualism because only mutualism should feature paths from time1-ability1 to time2-ability2 

(“coupling effects”; the higher intercept on ability1 at time1, the higher value of ability2 at time2). 

Such findings would not be expected under G.
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Figure 1. Three-factor oblique CFA.  
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Figure 2. Four-factor orthogonal bifactor CFA.  
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Figure 3. Number of studies comparing correlated factors and bifactor models of psychopathology 
data per year. *As of October 27, 2017.  
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Figure 4. Simulation model from which random samples were generated. In this three-factor 

oblique CFA, the solid lines represent parameters that were estimated for all models, whereas the 

dashed lines represent parameters that were manipulated, including (a) strength of cross-loading 

between factors, (b) strength of a between-factor correlated residual, and (c) strength of a within-

factor correlated residual.    

 

 



SIMULATION STUDY OF FIT INDEX BIAS	 65 

Appendix 

List of Studies Comparing Correlated Factors and Bifactor Models from 2010 to 2017 

2010 

1. Martel, M. M., Gremillion, M., Roberts, B., von Eye, A., & Nigg, J. T. (2010). The structure of 

childhood disruptive behaviors. Psychological Assessment, 22(4), 816. 

2. Martel, M. M., Von Eye, A., & Nigg, J. T. (2010). Revisiting the latent structure of ADHD: is 

there a ‘g’factor?. Journal of Child Psychology and Psychiatry, 51(8), 905-914. 

2011 

3. Lahey B. B., Van Hulle C. A., Singh A. L., Waldman I. D., Rathouz P. J. (2011). Higher-order 

genetic and environmental structure of prevalent forms of child and adolescent 

psychopathology. Archives of General Psychiatry, 68, 181–189.  

4. Wolf, E. J., Miller, M. W., & Brown, T. A. (2011). The structure of personality disorders in 

individuals with posttraumatic stress disorder. Personality Disorders: Theory, Research, and 

Treatment, 2(4), 261. 

2012 

5. Lahey, B. B., Applegate, B., Hakes, J. K., Zald, D. H., Hariri, A. R., & Rathouz, P. J. (2012). Is 

there a general factor of prevalent psychopathology during adulthood? Journal of Abnormal 

Psychology, 121(4), 971. 

6. Kramer, M. D., Patrick, C. J., Krueger, R. F., & Gasperi, M. (2012). Delineating physiologic 

defensive reactivity in the domain of self-report: phenotypic and etiologic structure of 

dispositional fear. Psychological Medicine, 42(6), 1305-1320. 

7. Reininghaus, U., Priebe, S., & Bentall, R. P. (2012). Testing the psychopathology of psychosis: 

evidence for a general psychosis dimension. Schizophrenia Bulletin, 39(4), 884-895. 



SIMULATION STUDY OF FIT INDEX BIAS	 66 

8. Toplak, M. E., Sorge, G. B., Flora, D. B., Chen, W., Banaschewski, T., Buitelaar, J., ... & 

Miranda, A. (2012). The hierarchical factor model of ADHD: invariant across age and national 

groupings?. Journal of Child Psychology and Psychiatry, 53(3), 292-303. 

2013 

9. Blanco, C., Krueger, R. F., Hasin, D. S., Liu, S. M., Wang, S., Kerridge, B. T., ... & Olfson, M. 

(2013). Mapping common psychiatric disorders: structure and predictive validity in the national 

epidemiologic survey on alcohol and related conditions. JAMA Psychiatry, 70(2), 199-207. 

10. Jonas, K. G., & Markon, K. E. (2013). A model of psychosis and its relationship with 

impairment. Social Psychiatry and Psychiatric Epidemiology, 48(9), 1367-1375. 

2014 

11. Burns, G. L., Moura, M. A., Beauchaine, T. P., & McBurnett, K. (2014). Bifactor latent 

structure of ADHD/ODD symptoms: Predictions of dual-pathway/trait-impulsivity etiological 

models of ADHD. Journal of Child Psychology and Psychiatry, 55(4), 393-401. 

12. Caspi, A., Houts, R. M., Belsky, D. W., Goldman-Mellor, S. J., Harrington, H., Israel, S., ... & 

Moffitt, T. E. (2014). The p factor: one general psychopathology factor in the structure of 

psychiatric disorders?. Clinical Psychological Science, 2(2), 119-137. 

13. Olino, T. M., Dougherty, L. R., Bufferd, S. J., Carlson, G. A., & Klein, D. N. (2014). Testing 

models of psychopathology in preschool-aged children using a structured interview-based 

assessment. Journal of Abnormal Child Psychology, 42(7), 1201-1211. 

2015 

14. Calkins, M. E., Merikangas, K. R., Moore, T. M., Burstein, M., Behr, M. A., Satterthwaite, T. 

D., ... & Qiu, H. (2015). The Philadelphia Neurodevelopmental Cohort: constructing a deep 

phenotyping collaborative. Journal of Child Psychology and Psychiatry, 56(12), 1356-1369. 



SIMULATION STUDY OF FIT INDEX BIAS	 67 

15. Laceulle, O. M., Vollebergh, W. A., & Ormel, J. (2015). The structure of psychopathology in 

adolescence: replication of a general psychopathology factor in the TRAILS study. Clinical 

Psychological Science, 3(6), 850-860. 

16. Lahey, B. B., Rathouz, P. J., Keenan, K., Stepp, S. D., Loeber, R., & Hipwell, A. E. (2015). 

Criterion validity of the general factor of psychopathology in a prospective study of girls. 

Journal of Child Psychology and Psychiatry, 56(4), 415-422. 

17. Murray, A. L., McKenzie, K., Kuenssberg, R., & Booth, T. (2015). Do the Autism Spectrum 

Quotient (AQ) and Autism Spectrum Quotient Short Form (AQ-S) Primarily Reflect General 

ASD Traits or Specific ASD Traits? A Bi-Factor Analysis. Assessment, 1, 14. 

18. Noordhof, A., Krueger, R. F., Ormel, J., Oldehinkel, A. J., & Hartman, C. A. (2015). Integrating 

autism-related symptoms into the dimensional internalizing and externalizing model of 

psychopathology. The TRAILS Study. Journal of Abnormal Child Psychology, 43(3), 577-587. 

19. Núñez, D., Arias, V., Vogel, E., & Gómez, L. (2015). Internal structure of the Community 

Assessment of Psychic Experiences—Positive (CAPE-P15) scale: Evidence for a general factor. 

Schizophrenia Research, 165(2), 236-242. 

20. Patalay, P., Fonagy, P., Deighton, J., Belsky, J., Vostanis, P., & Wolpert, M. (2015). A general 

psychopathology factor in early adolescence. The British Journal of Psychiatry, 207(1), 15-22. 

21. Preti, A., Siddi, S., Vellante, M., Scanu, R., Muratore, T., Gabrielli, M., ... & Petretto, D. R. 

(2015). Bifactor structure of the Schizotypal Personality Questionnaire (SPQ). Psychiatry 

Research, 230(3), 940-950. 

22. Preti, A., Corrias, I., Gabbrielli, M., Lai, V., Muratore, T., Pintus, E., ... & Vellante, M. (2015). 

The independence of schizotypy from affective temperaments–a combined confirmatory factor 

analysis of SPQ and the short TEMPS-A. Psychiatry Research, 225(1), 145-156. 



SIMULATION STUDY OF FIT INDEX BIAS	 68 

23. Snyder, H. R., Gulley, L. D., Bijttebier, P., Hartman, C. A., Oldehinkel, A. J., Mezulis, A., ... & 

Hankin, B. L. (2015). Adolescent emotionality and effortful control: Core latent constructs and 

links to psychopathology and functioning. Journal of Personality and Social Psychology, 

109(6), 1132. 

24. Stochl, J., Khandaker, G. M., Lewis, G., Perez, J., Goodyer, I. M., Zammit, S., ... & Jones, P. B. 

(2015). Mood, anxiety and psychotic phenomena measure a common psychopathological factor. 

Psychological Medicine, 45(7), 1483-1493. 

25. Wagner, F., Martel, M. M., Cogo-Moreira, H., Maia, C. R. M., Pan, P. M., Rohde, L. A., & 

Salum, G. A. (2016). Attention-deficit/hyperactivity disorder dimensionality: the reliable ‘g’ 

and the elusive‘s’ dimensions. European Child & Adolescent Psychiatry, 25(1), 83-90. 

2016 

26. Arias, V. B., Ponce, F. P., Martínez-Molina, A., Arias, B., & Núñez, D. (2016). General and 

specific attention-deficit/hyperactivity disorder factors of children 4 to 6 years of age: An 

exploratory structural equation modeling approach to assessing symptom multidimensionality. 

Journal of Abnormal Psychology, 125(1), 125. 

27. Carragher, N., Teesson, M., Sunderland, M., Newton, N. C., Krueger, R. F., Conrod, P. J., ... & 

Slade, T. (2016). The structure of adolescent psychopathology: a symptom-level analysis. 

Psychological Medicine, 46(5), 981-994. 

28. Castellanos-Ryan, N., Brière, F. N., O’Leary-Barrett, M., Banaschewski, T., Bokde, A., 

Bromberg, U., ... & Garavan, H. (2016). The structure of psychopathology in adolescence and 

its common personality and cognitive correlates. Journal of Abnormal Psychology, 125(8), 

1039. 



SIMULATION STUDY OF FIT INDEX BIAS	 69 

29. Conway, C. C., Starr, L. R., Espejo, E. P., Brennan, P. A., & Hammen, C. (2016). Stress 

responsivity and the structure of common mental disorders: Transdiagnostic internalizing and 

externalizing dimensions are associated with contrasting stress appraisal biases. Journal of 

Abnormal Psychology, 125(8), 1079. 

30. Del Giudice, M. (2016). The life history model of psychopathology explains the structure of 

psychiatric disorders and the emergence of the p factor: a simulation study. Clinical 

Psychological Science, 4(2), 299-311. 

31. Lee, S., Burns, G. L., Beauchaine, T. P., & Becker, S. P. (2016). Bifactor latent structure of 

attention-deficit/hyperactivity disorder (ADHD)/oppositional defiant disorder (ODD) symptoms 

and first-order latent structure of sluggish cognitive tempo symptoms. Psychological 

Assessment, 28(8), 917. 

32. Liu, J., Mustanski, B., Dick, D., Bolland, J., & Kertes, D. A. (2016). Risk and protective factors 

for comorbid internalizing and externalizing problems among economically disadvantaged 

African American youth. Development and Psychopathology, 29(3), 1043-1056. 

33. McGrath, L. M., Braaten, E. B., Doty, N. D., Willoughby, B. L., Wilson, H. K., O'donnell, E. 

H., ... & Metzger, A. (2016). Extending the ‘cross-disorder’relevance of executive functions to 

dimensional neuropsychiatric traits in youth. Journal of Child Psychology and Psychiatry, 

57(4), 462-471. 

34. Neumann, A., Pappa, I., Lahey, B. B., Verhulst, F. C., Medina-Gomez, C., Jaddoe, V. W., ... & 

Tiemeier, H. (2016). Single nucleotide polymorphism heritability of a general psychopathology 

factor in children. Journal of the American Academy of Child & Adolescent Psychiatry, 55(12), 

1038-1045. 



SIMULATION STUDY OF FIT INDEX BIAS	 70 

35. Ogg, J. A., Bateman, L., Dedrick, R. F., & Suldo, S. M. (2016). The relationship between life 

satisfaction and ADHD symptoms in middle school students: Using a bifactor model. Journal of 

Attention Disorders, 20(5), 390-399. 

36. Shevlin, M., McElroy, E., Bentall, R. P., Reininghaus, U., & Murphy, J. (2016). The psychosis 

continuum: testing a bifactor model of psychosis in a general population sample. Schizophrenia 

Bulletin, 43(1), 133-141. 

37. Smith, Z. R., Becker, S. P., Garner, A. A., Rudolph, C. W., Molitor, S. J., Oddo, L. E., & 

Langberg, J. M. (2016). Evaluating the structure of sluggish cognitive tempo using confirmatory 

factor analytic and bifactor modeling with parent and youth ratings. Assessment, 1, 13. 

38. Subica, A. M., Allen, J. G., Frueh, B. C., Elhai, J. D., & Fowler, J. C. (2016). Disentangling 

depression and anxiety in relation to neuroticism, extraversion, suicide, and self-harm among 

adult psychiatric inpatients with serious mental illness. British Journal of Clinical Psychology, 

55(4), 349-370. 

39. Waldman, I. D., Poore, H. E., van Hulle, C., Rathouz, P. J., & Lahey, B. B. (2016). External 

validity of a hierarchical dimensional model of child and adolescent psychopathology: Tests 

using confirmatory factor analyses and multivariate behavior genetic analyses. Journal of 

Abnormal Psychology, 125(8), 1053. 

2017 

40. Arrindell, W. A., Urbán, R., Carrozzino, D., Bech, P., Demetrovics, Z., & Roozen, H. G. (2017). 

SCL-90-R emotional distress ratings in substance use and impulse control disorders: one-factor, 

oblique first-order, higher-order, and bi-factor models compared. Psychiatry Research, 255, 

173. 



SIMULATION STUDY OF FIT INDEX BIAS	 71 

41. Brikell, I., Larsson, H., Lu, Y., Pettersson, E., Chen, Q., Kuja-Halkola, R., Karlsson, R., Lahey, 

B.B., Lichtenstein, P. and Martin, J. (2017). The contribution of common genetic risk variants 

for ADHD to a general factor of childhood psychopathology. bioRxiv, 193573. 

42. Byllesby, B. M., Elhai, J. D., Tamburrino, M., Fine, T. H., Cohen, G., Sampson, L., ... & 

Calabrese, J. R. (2017). General distress is more important than PTSD’s cognition and mood 

alterations factor in accounting for PTSD and depression’s comorbidity. Journal of Affective 

Disorders, 211, 118-123. 

43. Chamberlain, S. R., Stochl, J., Redden, S. A., & Grant, J. E. (2017). Latent traits of impulsivity 

and compulsivity: toward dimensional psychiatry. Psychological Medicine, 1-12. 

44. Gomez, R., & Watson, S. D. (2017). Confirmatory Factor Analysis of the Combined Social 

Phobia Scale and Social Interaction Anxiety Scale: Support for a Bifactor Model. Frontiers in 

Psychology, 8. 

45. Lahey, B. B., Zald, D. H., Perkins, S. F., Villalta-Gil, V., Werts, K. B., Van Hulle, C. A., ... & 

Watts, A. L. (2017). Measuring the hierarchical general factor model of psychopathology in 

young adults. International Journal of Methods in Psychiatric Research. 

46. Lorenz, L., Hyland, P., Perkonigg, A., & Maercker, A. (2017). Is adjustment disorder 

unidimensional or multidimensional? Implications for ICD-11. International Journal of 

Methods in Psychiatric Research. 

47. Martel, M. M., Pan, P. M., Hoffmann, M. S., Gadelha, A., do Rosário, M. C., Mari, J. J., ... & 

Rohde, L. A. (2017). A general psychopathology factor (P factor) in children: Structural model 

analysis and external validation through familial risk and child global executive function. 

Journal of Abnormal Psychology, 126(1), 137. 



SIMULATION STUDY OF FIT INDEX BIAS	 72 

48. Niarchou, M., Moore, T. M., Tang, S. X., Calkins, M. E., McDonald-McGuinn, D. M., Zackai, 

E. H., ... & Gur, R. E. (2017). The dimensional structure of psychopathology in 22q11. 2 

Deletion Syndrome. Journal of Psychiatric Research, 92, 124-131. 

49. Nigg, J. T., Jester, J. M., Stavro, G. M., Ip, K. I., Puttler, L. I., & Zucker, R. A. (2017). 

Specificity of executive functioning and processing speed problems in common 

psychopathology. Neuropsychology, 31(4), 448. 

50. Perry, K. J., & Ostrov, J. M. (2017). Testing a Bifactor Model of Relational and Physical 

Aggression in Early Childhood. Journal of Psychopathology and Behavioral Assessment, 1-14. 

51. Pezzoli, P., Antfolk, J., & Santtila, P. (2017). Phenotypic factor analysis of psychopathology 

reveals a new body-related transdiagnostic factor. PloS One, 12(5), e0177674. 

52. Rodenacker, K., Hautmann, C., Görtz-Dorten, A., & Döpfner, M. (2017). Evidence for the 

Trait-Impulsivity Etiological Model in a Clinical Sample: Bifactor Structure and Its Relation to 

Impairment and Environmental Risk. Journal of Abnormal Child Psychology, 1-11. 

53. Romer, A. L., Knodt, A. R., Houts, R., Brigidi, B. D., Moffitt, T. E., Caspi, A., & Hariri, A. R. 

(2017). Structural alterations within cerebellar circuitry are associated with general liability for 

common mental disorders. Molecular psychiatry. 

54. Snyder, H. R., Young, J. F., & Hankin, B. L. (2017). Strong homotypic continuity in common 

psychopathology-, internalizing-, and externalizing-specific factors over time in adolescents. 

Clinical Psychological Science, 5(1), 98-110. 

55. St Clair, M. C., Neufeld, S., Jones, P. B., Fonagy, P., Bullmore, E. T., Dolan, R. J., ... & 

Goodyer, I. M. (2017). Characterising the latent structure and organisation of self-reported 

thoughts, feelings and behaviours in adolescents and young adults. PloS One, 12(4), e0175381. 



SIMULATION STUDY OF FIT INDEX BIAS	 73 

56. Tackett, J. L., Krieger, H., Neighbors, C., Rinker, D., Rodriguez, L., & Edward, G. (2017). 

Comorbidity of Alcohol and Gambling Problems in Emerging Adults: A Bifactor Model 

Conceptualization. Journal of Gambling Studies, 33(1), 131-147.  

 

View publication statsView publication stats

https://www.researchgate.net/publication/334554904

