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Abstract

We discuss the Gaussian graphical model (GGM; an undi-
rected network of partial correlation coefficients) and detail
its utility as an exploratory data analysis tool. The GGM can
highlight potential causal relationships between observed
variables—psychological dynamics—in addition to showing
which variables predict one-another. We describe the utility
in 3 kinds of psychological datasets: datasets in which con-
secutive cases are assumed independent (e.g., cross-sectional
data), temporally ordered datasets (e.g., n = 1 time series),
and a mixture of the 2 (e.g., n > 1 time series). In time-series
analysis, the GGM can be used to model the residual struc-
ture of a vector-autoregression analysis (VAR), also termed
graphical VAR. Two network models can then be obtained:
a temporal network and a contemporaneous network. When
analyzing data from multiple subjects, a GGM can also be
formed on the covariance structure of stationary means—the
between-subjects network. We discuss the interpretation of
these models and propose estimation methods to obtain these
networks, which we implement in the R packages graphical-
VAR and mlVAR. The methods are showcased in two empir-
ical examples, and simulation studies on these methods are
included in the supplementary materials.

Introduction

There has been a surge of network models being applied
to psychological datasets in recent years. This is consis-
tent with a general call to conceptualize observed psycho-
logical processes not merely as indicative of latent com-
mon causes but rather as emergent behavior of complex,
dynamical systems in which psychological, biological, and
sociological components directly interact with each other
(Borsboom, Cramer, Schmittmann, Epskamp, & Waldorp,
2011; Cramer et al., 2012; Cramer, Waldorp, van der Maas,
& Borsboom, 2010; Schmittmann et al., 2013; van der Maas
et al., 2006). Such relationships are typically not known,
and probabilistic network models (Koller & Friedman, 2009)
are used to explore potential causal relationships between ob-
servables (Epskamp, Maris, Waldorp, & Borsboom, in press;
van Borkulo et al., 2014)—the dynamics of psychology. In
this paper we aim to provide a methodological introduc-
tion to a powerful probabilistic network model applicable
in exploratory data analysis, the Gaussian graphical model
(GGM), and to propose how it can be used and interpreted in
the analysis of time-series data.

Two lines of network research in psychology. We can
currently distinguish two distinct and mostly separate lines
of research in which networks are utilized on psychological
datasets: the modeling of cross-sectional data and the mod-
eling of intensive repeated measures in relatively short time
frames (e.g., several times per day during several weeks).
In cross-sectional modeling, a model is applied to a dataset

in which multiple subjects are measured only once. The
most popularly used methods estimate undirected network
models, indicating pairwise interactions—so-called pairwise
Markov random fields (Epskamp et al., in press; Murphy,
2012). When the data are continuous and assumed normally
distributed, the GGM can be estimated. The GGM estimates
a network of partial correlation coefficients—the correlation
between two variables after conditioning on all other vari-
ables in the dataset (Epskamp, Borsboom, & Fried, 2017).
This model is applied extensively to psychological data (e.g.,
Cramer et al., 2012; Fried, Epskamp, Nesse, Tuerlinckx, &
Borsboom, 2016; Isvoranu et al., 2017; Kossakowski et al.,
2015; McNally et al., 2015; van Borkulo et al., 2015).

Researchers can obtain time-series data by using the expe-
rience sampling method (ESM; Myin-Germeys et al., 2009),
in which subjects are asked several times per day to fill out
a short questionnaire using a device or smartphone app. Of-
ten in ESM data, repeated measures of one or multiple par-
ticipants are modeled through the use of (multilevel) vec-
tor autoregressive (VAR) models, which estimate how well
each variable predicts the measured variables at the next
time point (Borsboom & Cramer, 2013). These models are
increasingly popular in assessing intraindividual dynamical
structures (e.g., Bringmann et al., 2013; Bringmann, Lem-
mens, Huibers, Borsboom, & Tuerlinckx, 2015; Wigman
et al., 2015). Estimating the GGM is not limited to cross-
sectional data; the model merely does not take temporal in-
formation into account. As such, the lines of research on net-
work modeling of cross-sectional data and time-series data
can naturally be combined. First, GGM models can readily
be estimated on repeated measures, if these can be assumed
to be temporally independent. Second, as the VAR model can
be seen as a generalization of the GGM that takes violations
of independence between consecutive cases into account; the
GGM can be used to model the contemporaneous time level
of a time-series analysis. Finally, the between-subjects ef-
fects of n > 1 studies can also be modeled through the use of
the GGM.

Outline. We show that in time-series modeling the
GGM allows researchers to extend the modeling framework
to incorporate contemporaneous and between-subjects ef-
fects. We do this by building up the model complexity in
three steps: (1) when cases can be assumed to be indepen-
dent (e.g., cross-sectional data or repeated measures in which
no auto-regression is assumed), (2) temporally ordered data
(e.g., n = 1 time-series data or n > 1 time-series data where
no individual differences are assumed), and (3) temporally
ordered data from multiple subjects (e.g., n > 1 time series).
The final level of model complexity leads to a novel contribu-
tion of this paper: separation of variance into contemporane-
ous, temporal, and between-subjects network structures. We
propose novel estimation procedures to estimate these mod-
els, which we have implemented in two free software pack-
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ages: mlVAR,1 and graphicalVAR.2 We furthermore expand
on existing literature by providing a comprehensive method-
ological discussion of the GGM, by comparing the GGM
to approaches of causal modeling in time-series analysis,
by providing overviews of estimation methods and software
packages useable in each kind of dataset and by discussing
the interpretation of networks estimated at the contempora-
neous and between-subjects levels. We showcase network
models estimated from n > 1 time-series data in two empiri-
cal examples by reanalyzing existing datasets (Bringmann et
al., 2013; Geschwind, Peeters, Drukker, van Os, & Wichers,
2011; Mõttus, Epskamp, & Francis, 2017). In the supple-
mentary materials, we provide codes to perform the analyses
and we assess the performance of these methods in large-
scale simulation studies. To aid the reader in the various dif-
ferent terms used in this paper, we have included a glossary
of terms in Appendix A.

The Gaussian Graphical Model

Let yyy>C =
[
YC1 YC2 . . . YCm

]
denote a random vector

with yyyc as its realization.3 We assume yyyC is centered and
normally distributed with some variance–covariance matrix
ΣΣΣ:

yyyC ∼ N(000,ΣΣΣ). (1)

The subscript C denotes a case (a row in the spreadsheet). We
currently do not define the nature of the observed variables.
Thus, yyyC can consist of variables relating to one or more sub-
jects, could contain repeated measures on one or more vari-
ables, could contain variables of a single subject that do not
vary within-subject, and so forth. Consider three examples:
(1) Y1 could represent the level of anxiety of subject p on
day 1 and Y2 the level of anxiety of subject p on day 2, (2)
Y1 could represent the length of subject p and Y2 the number
of times subject p bumps his or her head, and (3) Y1 could
represent the number of cigarettes subject p smokes per day
and Y2 the number of cigarettes another subject p + 1 smokes
per day (case C then represents a dyadic pair).

Partial correlation networks. Assuming multivariate
normality, ΣΣΣ encodes all the information necessary to deter-
mine how the observed measures relate to one another. How-
ever, we will not focus on ΣΣΣ in this paper but rather on its
inverse—the precision matrix KKK,

KKK = ΣΣΣ−1.

Of particular importance is that the precision matrix can be
standardized to encode partial correlation coefficients of two
variables, given all other variables (dropping subscript C for
notational clarity; Lauritzen, 1996):4

Cor
(
Yi,Y j | yyy−(i, j)

)
= −

κi j
√
κii
√
κ j j
, (2)

in which κi j denotes an element of KKK, and yyy−(i, j) denotes the
set of variables without i and j. These partial correlations

can be graphically displayed in a weighted network, in which
each variable Yi is represented as a node, and connections
(edges) between these nodes represent the partial correlation
between two variables. When the partial correlation (thus the
corresponding element in KKK) equals zero, no edge is drawn.
Thus, modeling the inverse variance–covariance matrix, such
that every nonzero element is treated as a freely estimated pa-
rameter, allows for a sparse model for ΣΣΣ (i.e., every element
in ΣΣΣ may be nonzero while some elements in KKK are zero;
Epskamp, Rhemtulla, & Borsboom, 2017). Such a model is
termed a GGM (Lauritzen, 1996).

When drawing a GGM as a network (often termed a par-
tial correlation network, positive partial correlations are typi-
cally visualized with blue or green edges and negative partial
correlations with red edges,5 and the absolute strength of a
partial correlation is represented by the width and saturation
of an edge (Epskamp et al., 2012). When a partial correlation
is zero, we draw no edge between two nodes. As such, the
GGM can be seen as a network model of conditional associ-
ations; no edge indicates that two variables are independent
after conditioning on all other variables in the dataset. This
allows us to model conditional associations, which we might
expect to be zero, rather than marginal associations, which
we rarely expect to be zero (Meehl, 1990).

To exemplify the above, suppose for three variables the
true variance–covariance matrix is:

ΣΣΣ =

 1 −0.26 0.31
−0.26 1 −0.08
0.31 −0.08 1

 .
To estimate this matrix, we need six parameters (three covari-
ances and three variances). The corresponding true precision

1CRAN link: http://cran.r-project.org/package=mlVAR
Github link (developmental): http://www.github.com/

SachaEpskamp/mlVAR.
2CRAN link: http://cran.r-project.org/package=graphicalVAR

Github link (developmental): http://www.github.com/

SachaEpskamp/graphicalVAR.
3We use capitalized subscripts to denote random variables and

lower case subscripts to denote fixed variables. A variable can po-
tentially be fixed with respect to one subscript but random with
respect to another. Supplementary materials section 1 contains a
complete overview of the notation used in this paper.

4This relationship can be traced back much further. For ex-
ample, Heiser (2017) traced this relationship back to the work of
Guttman et al. (1938).

5Many publications make use of the default color setup used in
qgraph (Epskamp, Cramer, Waldorp, Schmittmann, & Borsboom,
2012): green for positive edges and red for negative edges. A later
version of qgraph includes the option theme = "colorblind" us-
ing a more colorblind-friendly coloring scheme and setting the pos-
itive edge color to blue. This option has been used for all graphs
in this paper. Note that some publications (e.g., Schuurman, 2016)
also use blue and red edges but use red to denote positive and blue
to denote negative effects akin to a heat map.
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matrix becomes:

KKK = ΣΣΣ−1 =

 1.18 0.28 −0.34
0.28 1.07 0
−0.34 0 1.11

 .
Similar to structural equation modeling (SEM; Kaplan, 2000;
Wright, 1921), a model can be devised that perfectly explains
this pattern using only five parameters, because one of the el-
ements in KKK can be constrained to be zero (Epskamp, Rhem-
tulla, & Borsboom, 2017). We can now standardize this
matrix and make the off-diagonal elements negative (Equa-
tion (2)) to obtain the partial correlation matrix, which we
will denote RRR:

RRR =

 1 −0.25 0.3
−0.25 1 0

0.3 0 1

 .
This matrix can be used to draw a network as is shown in
Figure 1. This figure shows that someone who is tired is also
more likely to suffer from concentration problems and in-
somnia. Furthermore, this network shows that concentration
problems and insomnia are conditionally independent given
the level of fatigue.

Interpreting GGMs. In SEM, a causal model can be
tested through specifying a sparse directed network, typically
leading to nonzero expected elements in ΣΣΣ with positive de-
grees of freedom. Because elements in the GGM can be zero
while allowing for all elements of ΣΣΣ to be nonzero, the GGM
offers a similar way of modeling ΣΣΣ in a sparse manner, but,
in contrast to SEM, now by using undirected networks that
do not rely on a strong causal theory on the direction of the
effects (Epskamp, Rhemtulla, & Borsboom, 2017). This pa-
per concerns the exploratory estimation of such models from
data, without prior knowledge on the model structure. The
use of undirected network models, rather than directed net-
work models, in such an exploratory setting helps us to dis-
cover psychological dynamics in several ways:

1. The GGM is well identified and does not feature equiv-
alent models. Many different directed causal models
and an infinite number of latent variable models can
lead to one exact GGM. Therefore, exploratory search
algorithms perform well in identifying a GGM model
without prior knowledge (e.g., latent variables) or cer-
tain assumptions (e.g., acyclicity).

2. Causal effects between two variables lead to an edge in
the GGM. Furthermore, assuming all interacting vari-
ables are observed without measurement error (both
unobserved variables as well as measurement error can
induce spurious edges), the absence of a causal effect
between two variables leads to no edge in the GGM,
except when both variables jointly cause a third vari-
able in the model. Therefore, an edge in the GGM can
be seen as indicative of potential causal pathways.

−0.25 0.3

Fatigue

InsomniaConcentration

Figure 1. A hypothetical example of a GGM on psycholog-
ical variables. Nodes represent someone’s ability to concen-
trate, someone’s level of fatigue, and someone’s level of in-
somnia. Connections between the nodes, termed edges, rep-
resent partial correlation coefficients between two variables
after conditioning on the third. Blue edges indicate positive
partial correlations, red edges indicate negative partial corre-
lations, and the width and saturation of an edge corresponds
to the absolute value of the partial correlation.

3. When an edge is spurious, for example, due to the
presence of an unobserved cause, the undirected net-
work does not feature a troublesome directional inter-
pretation (Baumert et al., in press). Instead, the pres-
ence of common-cause structures in a dataset is repre-
sented by clusters (a set of nodes that are all connected
to one another) in the GGM.

4. Unlike directed causal models, which strongly rely on
the causal interpretation, the GGM can also be in-
terpreted without any causal interpretation and used
merely as a tool to show which variables predict one-
another. Interpreting the parameters associated with
the model A → B → C requires a causal interpreta-
tion, while the predictive quality between these nodes
can directly be obtained from the equivalent GGM A
— B — C. As such, the GGM can always be inter-
preted to show predictive effects and offers a powerful
exploratory tool to gain insight into potential media-
tion paths and to map out multicollinearity.

5. Undirected network models also allow for a causal
interpretation, one of genuine symmetric effects, and
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have been used thusly in diverse scientific fields such
as statistical physics (Murphy, 2012; Epskamp et al.,
in press).

We outline these points in more detail below. First, we
discuss Points 1 to 3 by exploring the relationship between
the GGM and causal generating mechanisms. Next, we dis-
cuss Point 4 by showing how partial correlation coefficients
correspond to multiple regression coefficients. Point 5 fol-
lows from observing that the GGM is directly related to sim-
ilar undirected models such as the Ising model (Ising, 1925).
A discussion on the causal interpretation of such models is
beyond the scope of this paper, and we refer the reader for
this topic to Epskamp et al. (in press) and van Borkulo et al.
(2014).

The Gaussian Graphical Model and Causal Generating
Structures

Let ηηηC represent a set of unobserved variables, which we
assume to be jointly normally distributed with yyyC . Then, we
can form an encompassing framework for several possible
causal generating models:

yyyc = BBByyyc + ΛΛΛηηηc + εεεc

εεεC ∼ N(000,ΘΘΘ), (3)

in which ΘΘΘ is a diagonal matrix, indicating that after con-
ditioning on all causes the variables are independent, BBB is
a square matrix with zeros on the diagonal of causal effects
between observed variables, and ΛΛΛ is a factor-loading matrix.
The variance–covariance matrix of ηηηC may in turn be mod-
eled in various ways to achieve complicated model setups.
The expression above is well-known in SEM, which allows
for confirmatory testing of causal models.

Problems with estimating causal models. Suppose
there are no unobserved causes to any of the variables in yyyC ,
and the variables in yyyC are only caused by other variables in
yyyC . The corresponding model for ΣΣΣ becomes

ΣΣΣ = (III − BBB)−1 ΘΘΘ (III − BBB)−1> . (4)

In this expression, BBB can now be seen to encode the causal
model (Pearl, 2000). Table 1 summarizes the comparison
between such causal models and GGMs. Although useful
for generating data, we can immediately see several prob-
lems in exploratory estimation of BBB without any prior knowl-
edge. First, if m variables are included, ΣΣΣ contains m(m+1)/2
elements, while ΘΘΘ contains m parameters and BBB contains
m(m − 1) parameters. As a result, the model above is under-
identified without stringent restrictions on BBB. One assump-
tion is that yyyC can be ordered such that BBB is lower triangu-
lar, indicating that if this matrix is used to draw a directed
graph—a graph in which A → B indicates that A causes
B—that graph does not contain any cycles. Such a graph is

called a directed acyclic graph (DAG; Kalisch & Bühlmann,
2007; Pearl, 2000), meaning that directed edges cannot be
traced from any node back to itself (e.g., A → B → A).
Although cycles can be identified when exogenous variables
are present (such as the weather, time, or, depending on the
modeling framework, lagged variables; Rigdon, 1995), in-
terpreting such cycles is still not without problems (Hayduk,
2009). Several software packages exist that aim to find such a
DAG (e.g., pcalg, Kalisch, Mächler, Colombo, Maathuis, &
Bühlmann, 2012; bnlearn, Scutari, 2010). However, the as-
sumption of acyclicity is debatable in the context of psycho-
logical variables (Schmittmann et al., 2013) because many
effects can be plausibly assumed cyclic (e.g., fatigue→ con-
centration problems→ stress→ fatigue).

Second, the same structure for ΣΣΣ can be obtained under
various different specifications of BBB. Thus, many equivalent
models can lead to exactly the same fit. This can be seen be-
cause several matrix decompositions of ΣΣΣ, such as a Cholesky
decomposition or an eigendecomposition, can be used to pro-
duce equivalently fitting BBB. The problem of equivalent mod-
els is also well-known in the literature on directed networks
and SEM (MacCallum, Wegener, Uchino, & Fabrigar, 1993;
Pearl, 2000). For example, the following three causal models
are not statistically distinguishable:

1. Concentration→ Fatigue→ Insomnia

2. Concentration← Fatigue→ Insomnia

3. Concentration← Fatigue← Insomnia

All three models only imply that concentration and insomnia
are conditionally independent given fatigue. With more vari-
ables, the number of potential equivalent models increases
drastically, making it evident that model search is likely
to fail. At best, exploratory estimation can result in a set
of equally plausible DAGs (an equivalence class; Drton &
Maathuis, 2017), each differently parameterized and each
leading to different strong causal hypotheses.

Third, exploratory search of causal networks critically re-
lies on the assumption that no latent variables caused some of
the covariation in the dataset. For example, suppose a single
common cause was responsible for all covariation between
observed variables. Then, even when conditioning on all
other observed variables two variables in the dataset would
still feature a correlation; thus, the optimal fitting equiv-
alence class would include every possibly fully connected
DAG (which is a saturated model). Every one of these fully
connected DAGs comes with strong causal hypotheses; all of
them are wrong.

Causal modeling and the GGM. We consider equiva-
lent models, poorly identified directions of effect (potentially
leading to the wrong direction to be estimated), and the re-
liance on no latent variables to be considerable downsides to
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Table 1
Overview of Causal Models (Directed Networks) and Gaussian Graphical Models (Undirected Networks)

Causal model Gaussian graphical model

ΣΣΣ−1 = (III − BBB)>ΘΘΘ−1 (III − BBB) = KKK

A⊥⊥ C | B

+ +

A

B

C

+ +

A

B

C

A⊥⊥ C | B

+ +

A

B

C

+ +

A

B

C

A 6⊥⊥ C | B

+ +

A

B

C

+ +

−A

B

C

R packages (confirmatory) Any SEM package lvnet (fit measures); qgraph (fit mea-
sures); ggm (estimation only); glasso
(estimation only)

R packages (exploratory) pcalg; bnlearn qgraph (EBICglasso function); glasso
(no automatic tuning parameter selec-
tion); huge; parcor; BDgraph; lvnet
(for GGM at latent or residual level of
SEM)

Pros Causal interpretation; allows for confir-
matory testing of causal hypotheses

No equivalent models; fast struc-
ture and parameter estimation using
LASSO; edges parametrizable as par-
tial correlation coefficients; edges in-
terpretable as predictive effects; latent
variables result in clusters; edges can be
indicative of potential causal effects

Cons Exploratory estimation requires as-
sumption of acyclicity; many equiva-
lent models; direction of effect poorly
or not identified; strongly depends on
assumption of no latent variables

No direction of effect; common ef-
fect structure can induce spurious edge;
LASSO estimation assumes true model
is sparse
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using causal networks or DAGs in the discovery of poten-
tial psychological dynamics, especially given that the added
direction of effect comes with a strong causal hypothesis on
what would happen under intervention. To this end, the undi-
rected GGM offers an attractive alternative to exploratory
DAG estimation: the GGM is saturated rather than overi-
dentified if all edges are present, does not feature equiva-
lent models, does not suffer from a questionable direction of
causal effect, does not require the assumption of acyclicity,
and is easily parameterized using partial correlation coeffi-
cients (Epskamp, Rhemtulla, & Borsboom, 2017). In the
presence of latent variables, the GGM also shows a fully
connected cluster of nodes. However, edges in this cluster
do not impose causal direction. Thus, the GGM gives insight
into potential latent variables through its clustering, naturally
complementing exploratory factor modeling (Golino & Ep-
skamp, 2017).

To investigate the structure of a GGM under the causal
model of Equation (4), in which observed variables can only
be caused by other observed variables, we can invert that ex-
pression to obtain

KKK = (III − BBB)>ΘΘΘ−1 (III − BBB) , (5)

in which ΘΘΘ−1 is still a diagonal matrix. It becomes evident
that there is no longer a matrix inversion needed and that the
sparsity in BBB directly corresponds to the sparsity in KKK. Unlike
marginal covariances, the GGM thus acts on the same level
as causal modeling. We can derive that κi j equals zero if
there is no directed edge between node i and j (e.g., Yi → Y j

or Yi ← Y j) and if there is no common effect of node i and
node j (e.g., Yi → Yk ← Y j; Koller & Friedman, 2009).
Thus, assuming a causal model as in Equation (4) generated
the data, an edge in a GGM emerges as a result of a causal
effect or due to a common effect. Links in the GGM can
therefore be indicative of potential causal effects. In the case
of a spurious edge due to a common effect, the sign of the
edge can be informative: two positive causal effects from
two variables on a third lead to a negative partial correlation.
Important to note is that the GGM does not estimate a skele-
ton graph, a causal network with arrowheads removed, as the
common effect structure leads to induced edges in the GGM.
Such networks can be estimated (e.g., Kalisch, Maechler, &
Colombo, 2017), but are not parameterized and rely on many
separate conditional independence tests, potentially leading
to power issues.

The Gaussian Graphical Model and Multiple Regression

An edge in a GGM indicates that one node predicts a con-
nected node after controlling for all other nodes in the net-
work. This can also be shown in the relationship between
coefficients obtained from least-squares prediction and the
inverse variance–covariance matrix. Let ΓΓΓ represent an k × k
matrix with zeros on the diagonal. Each row of ΓΓΓ, without the

diagonal element ΓΓΓi,−(i), contains the regression coefficients
obtained in a multiple regression model:6

yci = τ + ΓΓΓi,−(i)yyyc,−(i) + εci.

As such, γi j encodes how well the jth variable predicts the
ith variable. This predictive effect is naturally symmet-
ric; if knowing someone’s level of insomnia predicts his
or her level of fatigue, then conversely knowing someone’s
level of fatigue allows us to predict his or her level of in-
somnia. As a result, γi j is proportional to γ ji. There is
a direct relationship between these regression coefficients
and the inverse variance–covariance matrix (Meinshausen &
Bühlmann, 2006). Let DDD denote a diagonal matrix on which
the ith diagonal element is the inverse of the ith residual
variance: dii = 1/Var(εCi). As a result, it can be shown
(Pourahmadi, 2011) that7

KKK = DDD (III − ΓΓΓ) . (6)

Thus, κi j is proportional to γi j; a zero in the inverse variance–
covariance matrix indicates that one variable does not pre-
dict another. Consequently, the network tells us something
about the extent to which variables predict each other. In ad-
dition to aiding the interpretation of GGM models, this rela-
tionship between multiple regression and undirected network
edges plays a crucial role in many network estimation proce-
dures (Meinshausen & Bühlmann, 2006; van Borkulo et al.,
2014; Haslbeck & Waldorp, 2016b), including the methods
discussed below in this paper.

Estimation

A GGM can be estimated in datasets where cases can be
assumed to be independent. Two common examples of such
data are cross-sectional data, in which every subject is only
measured once on a set of response items, or n = 1 time-
series data that feature large intervals between measurement
occasions. In time-series data featuring shorter intervals, a
GGM can be estimated as well; in this case, the network
could be termed a contemporaneous network. However, as
we argue in the next section on temporally ordered data, bet-
ter methods exist that take temporal information into account
in addition to modeling the contemporaneous effects in a
GGM. In cross-sectional data analysis, only one observation
per subject is available; thus, we cannot expect to estimate

6This expression should not be confused with Equation 3, which
we used as generating model. Here, we do not assume error terms
are independent and obtain ΓΓΓi,−(i) by univariate multiple regressions.

7This expression may differ by a scalar, depending on the esti-
mation method. For example, by default R computes the variance–
covariance matrix by using n − 1 in the denominator, but computes
Var(εCi) by using n−m in the denominator. This denominator is can-
celled out in Equation (2) when standardizing to partial correlation
coefficients.
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subject-specific means or GGM networks. It is typically as-
sumed that the subjects all share the same distribution. That
is,

yyyP ∼ N (000,ΣΣΣ) ,

in which yyyP denotes the random response of subject P on all
items. Similarly, in n = 1 time-series data we can make a
similar assumption:

yyyT ∼ N (000,ΣΣΣ) ,

in which yyyT denotes the random response of a subject on all
items at time point T . In both cases, the full likelihood can be
readily obtained, and the variance–covariance matrix ΣΣΣ can
reliably be estimated using maximum likelihood estimation
(MLE), least-squares estimation, or Bayesian estimation.

Regularization. The MLE solution of KKK—the precision
matrix encoding a GGM—can be obtained by standardizing
the inverse sample variance–covariance as per Equation (2).
To obtain a sparse network (i.e., KKK contains zeros), model
search can be performed by iteratively adding and removing
edges and fitting confirmatory GGMs. In recent literature, it
has become increasingly popular to use regularization tech-
niques, such as penalized MLE, to jointly estimate model
structure and parameter values (Costantini et al., 2015; van
Borkulo et al., 2014). The least absolute shrinkage and se-
lection operator (LASSO; Tibshirani, 1996) has been shown
to perform well in quickly estimating model structure and
parameter estimates of a sparse GGM (Friedman, Hastie, &
Tibshirani, 2008; Meinshausen & Bühlmann, 2006; Yuan &
Lin, 2007). A particularly popular variant of LASSO is the
graphical LASSO (glasso; Friedman et al., 2008), which di-
rectly penalizes elements of the inverse variance–covariance
matrix (Witten, Friedman, & Simon, 2011; Yuan & Lin,
2007). The glasso algorithm is useful as it is typically faster
than other GGM estimation algorithms (which conduct mul-
tiple separate regressions and then combine the results using
Equation 6), and requires only an estimate of the variance–
covariance matrix rather than raw data (Epskamp & Fried,
2017). LASSO utilizes a tuning parameter which can be cho-
sen in a way that optimizes cross-validated prediction accu-
racy or that minimizes information criteria such as the ex-
tended Bayesian information criterion (EBIC; Chen & Chen,
2008). Estimating a GGM with the glasso algorithm in com-
bination with EBIC model selection has been shown to work
well in retrieving the true network structure (Epskamp, 2016;
Foygel & Drton, 2010). For an introduction to this method-
ology aimed at empirical researchers, we refer the reader to
Epskamp and Fried (2017).

Software. Several software packages allow for GGM
estimation as described above. MLE can be performed
in any programming language and in many statistical pro-
grams by inverting and subsequently standardizing the sam-
ple variance–covariance matrix. In the open-source statis-
tical programming language R (R Core Team, 2017), au-

tomated procedures have been implemented in the corpcor
package (Schafer et al., 2017) and the qgraph (Epskamp et
al., 2012) package. The qgraph package also supports thresh-
olding via significance testing or false discovery rates. The
glasso algorithm is implemented in the glasso (Friedman,
Hastie, & Tibshirani, 2014) and huge (Zhao et al., 2015)
packages. EBIC-based tuning parameter selection using the
glasso package has been implemented in the qgraph pack-
age. The huge package also allows for selection of the tun-
ing parameter using cross validation or EBIC. The parcor
package (Krämer, Schäfer, & Boulesteix, 2009) implements
other LASSO variants to estimate the GGM. The BDgraph
package (Mohammadi & Wit, 2015) implements a Bayesian
method to estimate the undirected structure. Finally, fitting
an estimated GGM to data can be done in the R packages ggm
(Marchetti, Drton, & Sadeghi, 2015) and lvnet (Epskamp,
Rhemtulla, & Borsboom, 2017).

Cross-Sectional Data Analysis

Within- and between-subjects variation. A type of data
to which the GGM is now often applied is data belonging
to multiple subjects that are all measured only once (e.g.,
Isvoranu et al., 2017; van Borkulo et al., 2015). Such a
dataset is often termed cross-sectional data, and such an
analysis is often termed a between-subjects analysis. How-
ever, the term between-subjects analysis might not be war-
ranted, as it is difficult to distinguish between within-subject
variation around an individual’s stable mean and between-
subject variation of such stable within-subject means using
only cross-sectional data (Hamaker, 2012). It is well known
that subjects might respond differently when measured mul-
tiple times (Lord, Novick, & Birnbaum, 1968). As such,
the single observation per subject leads to the time point and
the subject being random: yyy[T,P]. We might make the argu-
ment that two distinct sources of variation cause the outcome
(Bolger & Laurenceau, 2013). Repeated measures of a sub-
ject (here p) are distributed according to an unique within-
subject model:

yyy[T,p] ∼ N(µµµp,ΘΘΘp),

That is, of a particular response, the subject’s score is a com-
posite of the average stationary score µµµp and random devia-
tion.8 These average stationary scores also differ in the popu-
lation. Thus, we need to model the average stationary scores
of a random subject P with a separate distribution:

µµµP ∼ N(000,ΩΩΩ),

8Section 5 of the supplementary materials show that when con-
secutive cases (t and t+1) are assumed dependent, such a zero-order
network may result from a mixture of temporal and contemporane-
ous effects. The discussion here does not yet concern estimation
of model parameters and hence does not require an assumption of
independence of cases.
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in which we can assume, without loss of generality, an over-
all mean of 000. We can invert the variance–covariance matrix
ΩΩΩ to obtain a GGM:

KKK(ΩΩΩ) = ΩΩΩ−1.

We call this a between-subjects network. The matrix ΘΘΘp

can also be inverted and standardized to a GGM to obtain
a within-subject network:

KKK(ΘΘΘ)
p = ΘΘΘ−1

p .

We will term this network a within-subjects network.
The value of a cross-sectional analysis. It is immedi-

ately clear that with only one response per subject we cannot
hope to estimate subject-specific variance-covariance matri-
ces ΘΘΘp (and as a result individual GGMs). Moreover, even if
we assume that within-subject effects are equal across sub-
jects and drop the subscript p, this still leaves us without
an estimable model because µµµ is also assumed to be nor-
mally distributed. The co-variation between responses thus
becomes an unidentified blend between ΘΘΘ and ΩΩΩ: A and B
may correlate in cross-sectional data because people who
score on average high on A also score on average high on
B (trait-level variation in ΩΩΩ), or because when people deviate
from their average on A they also tend to deviate from their
average on B (state-level variation in ΘΘΘ). Even when within-
and between-subjects effects are assumed not to correlate, the
GGM estimated on such data becomes

KKK = (ΘΘΘ + ΩΩΩ)−1 ,

which is not a simple function of the between-subjects GGM
and the within-subjects GGM. Only when no short-term
within-subject variation, ΘΘΘ = OOO, or no between-subjects vari-
ation, ΩΩΩ = OOO, is assumed does the cross-sectional GGM cor-
respond exactly to one of the two networks.

Cross-sectional data analysis thus cannot disentangle
between-subjects relationships from short term within-
subjects relationships (Hamaker, 2012). For example, cross-
sectional analysis cannot distinguish whether or not fatigue
and concentration correlate because whenever people feel
fatigued they also concentrate poorly (a within-subjects ef-
fect) or because people who are on average fatigued also
tend to concentrate poorly on average (a between-subjects
effect). We conducted a simulation study to assess the perfor-
mance of a cross-sectional GGM estimation, where we gen-
erated data from completely different within- and between-
subjects networks. The results are reported in Section 3.1
of the supplementary materials and show that the resulting
cross-sectional GGM generally does not contain edges that
are not present in either the within- or between-subjects net-
work. Depending on the ratio of within-to-between person
variance, the cross-sectional analysis will pick up the within-
subject network, the between-subject network, or a mixture

of the two. We furthermore conducted a simulation study
with two uncorrelated repeated measures per subject (rather
than just one). Now, estimating a GGM on within-subjects
centered pooled data adequately captures the within-subjects
network (assuming it is the same for every subject). Fur-
thermore, the GGM estimated on the subject-specific means
can estimate the between-subjects networks. These simula-
tion studies do rely on the assumption of no auto-regression
between the consecutive measurements, which might be ten-
able or not based on the research design. These simulation
studies are the first of its kind investigating cross-sectional
and repeated measurements GGM estimation, and should be
expanded to included more conditions. We encourage further
simulation studies investigating the performance of cross-
sectional and repeated measurements analysis.

Cross-sectional analysis as between-subjects analysis.
An important consideration is that a typical cross-sectional
questionnaire or interview is vastly different than a typical
ESM questionnaire, and many cross-sectional studies aim
to measure variables that are more stable over time and for
which a time-series analysis might not make sense. Good
examples of this are recent network analyses in the area of
schizophrenia (Isvoranu, Borsboom, van Os, & Guloksuz,
2016; Isvoranu et al., 2017), in which the impact of envi-
ronmental factors (e.g., childhood trauma, urbanization) on
psychotic symptoms and general psychopathology was stud-
ied. Such variables do not vary much over time; therefore,
a cross-sectional analysis seems more suitable here. Other
examples are questionnaires asking participants to rate symp-
toms over a period of several weeks or to describe themselves
as “I am a person who. . . ” In such cases, the cross-sectional
network can be interpreted as a between-subjects network, of
which we discuss the interpretation below.

Temporally Ordered Data

In line with a call for more intraindividual and person-
based research (Molenaar, 2004), an increasingly popular
form of data pertains to n = 1 time series, in which a sin-
gle individual is measured repeatedly over a period of time.
One such situation is in clinical practice (Kroeze et al., 2017;
Epskamp, van Borkulo, et al., 2017), where a patient can be
measured several times per day over a period of a few weeks.
We will limit our discussion to data obtained in a relatively
short time-frame so that we can reasonably assume the model
will remain stable over time. Then, we can apply the method-
ology above to obtain a GGM for the n = 1 data. How-
ever, such an analysis does not take temporal ordering of data
into account (i.e., relationships between measurement occa-
sions) and only investigates contemporaneous relationships
between variables (e.g., within the same measurement occa-
sion). This is important for several reasons. First, valuable
information, especially in the context of discovering psycho-
logical dynamics, might be contained at the temporal level
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rather than at the contemporaneous level. Second, not taking
temporal ordering into account might bias the estimated con-
temporaneous relationships (see Section 5 of the supplemen-
tary materials). For example, if one variable causes itself and
another variable at the next time, then not taking temporal
ordering into account turns that variable into a latent cause,
which would produce an edge in the GGM. Third, temporal
information is needed when constructing the joint likelihood
over time (e.g., to obtain the information retained in a sys-
tem over time; Epskamp, 2017a; Quax, Kandhai, & Sloot,
2013). Finally, temporal information can aide in distinguish-
ing reciprocal and cyclic effects by regarding these as acyclic
effects unfolding over time.

Vector Auto-regression. The simplest way to deal with
temporal ordering of cases is to incorporate the effect
between consecutive measurements (Shumway & Stoffer,
2010; Hamilton, 1994; Chatfield, 2016). This is called a Lag-
1 model because it includes both measurements at the current
time point t as well as measurements from the previous time
point t − 1. We will focus our discussion on Lag-1 models,
noting that everything below also generalizes to more com-
plicated models. In intraindividual analysis, VAR (Brandt
& Williams, 2007; Rosmalen, Wenting, Roest, de Jonge, &
Bos, 2012) has gained substantive footing in visualizing tem-
poral information through networks.

We can combine current and lagged measurements in a
single vector yyy>

{t−1,t} =
[
yyy>t−1 yyy>t

]
and form a general model-

ing framework:

yyy{t−1,t} = BBByyy{t−1,t} + εεε{t−1,t},

in which yyyt−1 are treated as exogenous. Thus, BBB does not
contain any effects towards any of the lagged variables,

BBB =

[
OOO OOO

BBB21 BBB22

]
,

and εεε is distributed normally,

εεε{T−1,T } ∼ N(000,ΘΘΘ).

We do not set ΘΘΘ to be diagonal but instead model its inverse
as a GGM, which we can arbitrarily separate into four blocks:

ΘΘΘ−1 = KKK(ΘΘΘ) =

[
KKK(ΘΘΘ)

11 OOO
OOO KKK(ΘΘΘ)

22

]
.

As the inverse of a block-diagonal matrix is similarly block-
diagonal, inverting KKK(ΘΘΘ)

11 will lead to the variance–covariance
matrix of yyy>t−1 and inverting KKK(ΘΘΘ)

22 will lead to the contempo-
raneous variance–covariance matrix: the residual structure
after taking BBB into account (also termed innovation). Every
generating model from Equation (3) can be represented in
this framework, where covariation between exogenous or la-
tent variables can be represented in the variance–covariance

structure of the residuals. Using this framework, we can con-
struct several modeling frameworks that allow us to jointly
model temporal and contemporaneous effects in a sparse
manner. Such effects can then be summarized in two net-
work models: the temporal network, discussed below, and
the contemporaneous network, which is either a directed or
undirected network of effects in the same window of mea-
surement.

Temporal networks. Temporal networks, encoded by
BBB21 in both below mentioned modeling frameworks, have
grown popular in recent psychological literature (e.g.,
Bringmann et al., 2013, 2015; Wigman et al., 2015; Bos et
al., 2017; Snippe et al., 2017; Klippel et al., 2017). A tem-
poral network is formed by combining a lagged variable yt−1
and current variable yt into a single node, connected with di-
rected edges which are weighted according to the regression
parameters contained in BBB21.9 Thus, an edge in the temporal
network indicates that a node predicts another node (or itself
in the common case of self-loops) at the next measurement
occasion, after controlling for all other variables at the pre-
vious measurement occasion. Temporal prediction is termed
Granger causality in the economic literature (Eichler, 2007;
Granger, 1969), and it satisfies at least the temporal require-
ment for causation (i.e., the cause must precede the effect).
Temporal networks may thus highlight potential causal path-
ways. An additional useful property of temporal networks is
that they need not be acyclic (the network can be seen as a
summary of an acyclic network over time).

Contemporaneous networks. In addition to temporal ef-
fects, VAR analyses also include contemporaneous effects,
which can be modeled in different ways. First, using struc-
tural VAR (SVAR; Chen et al., 2011), also called unified SEM
(Gates, Molenaar, Hillary, Ram, & Rovine, 2010), we spec-
ify

BBB =

[
OOO OOO

BBB21 BBB22

]
,

and

ΘΘΘ−1 = KKK(ΘΘΘ) =

[
KKK(ΘΘΘ)

11 OOO
OOO KKK(ΘΘΘ)

22

]
,

in which we keep KKK(ΘΘΘ)
11 saturated and force KKK(ΘΘΘ)

22 to be di-
agonal. The contemporaneous effects may be identified
by including all diagonal elements of BBB21 (autoregressions).
Model selection can be used to structure temporal effects in
BBB21 and contemporaneous effects in BBB22.

Second, the conditional distribution of yyyT given yyyT−1 =

yyyt−1 can be modeled as a GGM. Doing so is equivalent to
modeling the residual structure of a regular VAR model as

9Note, in graph theory it is common to encode a network using
a weights matrix in which the row indicates the node of origin and
the column indicates the row of destination. As such, to obtain the
directed weights matrix to draw a temporal network BBB21 needs to be
transposed.
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a GGM. We will term this modeling framework (a VAR
model with contemporaneous effects explicitly modeled and
portrayed as a GGM) graphical VAR (GVAR; Wild et al.,
2010).10 We obtain the GVAR model by setting

BBB =

[
OOO OOO

BBB21 OOO

]
and

ΘΘΘ−1 = KKK(ΘΘΘ) =

[
KKK(ΘΘΘ)

11 OOO
OOO KKK(ΘΘΘ)

22

]
,

in which we keep KKK(ΘΘΘ)
11 saturated and perform model selec-

tion on temporal effects in BBB21 and contemporaneous effects
in KKK(ΘΘΘ)

22 . It can be seen that when BBB21 = OOO, the GVAR model
is exactly the same as the GGM model described above for
independent cases. Thus, the GVAR model can be seen as a
generalization of the GGM model to temporally ordered data.
GVAR only differs from regular VAR in that the contempo-
raneous structure is modeled and represented as a GGM, in-
stead of being saturated. This leads to a strikingly different
interpretation of the VAR model; the VAR model can be seen
as an inclusion of temporal effects on a GGM.

Temporal and contemporaneous information. Figure 2
shows a hypothetical example of the two network structures
obtained in a GVAR analysis and shows how they might
plausibly differ. The left panel shows the temporal network.
The self-loop shows that whenever the subject in question
felt energetic (or tired) this person also felt more (or less) en-
ergetic in the next measurement. The temporal network also
shows us that after exercising, this person felt less energetic.
The contemporaneous network in the right panel shows a
plausible reverse relationship: Whenever this person exer-
cised, he or she felt more energetic in the same measurement
occasion. In psychology, there will likely be many causal
relationships that occur much faster than the lag interval of
a typical ESM study; in which case, these pathways will be
captured in the contemporaneous network. For example, if
someone is experiencing bodily discomfort, that will imme-
diately negatively affect that person’s ability to enjoy him
or herself (Epskamp, van Borkulo, et al., 2017). Especially
when the measurement is on blocks of time (e.g., “since the
last measurement did you feel ...”), such effects are likely to
be caught in the contemporaneous network, regardless of if
they are modeled using a directed or an undirected network.

Structural VAR and graphical VAR

Section 4 of the supplementary materials shows that the
SVAR and GVAR models can be equated, such that estimat-
ing one model can lead to an equivalent conceptualization in
the other framework (Lütkepohl, 2005; Beltz & Molenaar,
2016; Molenaar & Lo, 2016). For every SVAR model, one
unique GVAR conceptualization exists. Conversely how-
ever, for every GVAR model multiple possible SVAR models

would explain the data equally well. Table 2 summarizes this
information. At the contemporaneous level, the same equiv-
alence Equation (5) shows between GGMs and DAGs holds
between GVAR and SVAR: the sparsity of the contempora-
neous model in SVAR directly relates to the sparsity of the
contemporaneous model in GVAR. If data are generated via a
SVAR model, the corresponding contemporaneous network
in the GVAR model will feature an edge whenever there is an
edge between two variables in the contemporaneous network
of the SVAR model or whenever there is a common effect
between two variables in the contemporaneous network of
the SVAR model. The temporal structure between GVAR
and SVAR differs in that in GVAR mediators at the contem-
poraneous time level are not taken into account in the esti-
mation of the temporal model. As Table 2 shows, if A pre-
dicts itself over time, and A predicts B in the same measure-
ment occasion, then A predicts B over time as well. When
correctly modeled, such a mediator is controlled for in the
temporal network obtained from SVAR but not in the tem-
poral network obtained from GVAR. In sum, when a SVAR
model generated the data, spurious connections can appear in
the corresponding GVAR model due to (1) a common effect
structure at the contemporaneous time level or (2) an unmod-
elled mediator between a temporal and a contemporaneous
effect.

GVAR as alternative to SVAR. The GVAR thus contains
more edges than SVAR in addition to losing information on
the direction of effect at the contemporaneous level. Still, the
GVAR model offers an attractive alternative to SVAR model-
ing. Most importantly, the GVAR model is always well iden-
tified and has only one unique optimal solution, whereas the
SVAR model is potentially unidentified. As can be derived
from the equivalence in Table 2, when a saturated SVAR
model is estimated, any matrix decomposition (typically a
Cholesky decomposition is used) of the inverse contempo-
raneous variance–covariance matrix leads to an equivalent
SVAR model, whereas the structural model in the GVAR
model is directly obtained from the same inverse contempo-
raneous variance–covariance matrix. Constraining elements
in the contemporaneous SVAR network based on prior theory
or model search (i.e., removing edges by using unified SEM;
Gates et al., 2010) overcomes this problem. When temporal
effects are present, lagged variables act as exogenous predic-
tors, making cycles in the contemporaneous model identified
(Rigdon, 1995). As a result, the contemporaneous model
A → B can be distinguishable from B → A. While auto-
regressions are to be expected, they are not guaranteed. As
such, even when modeled, multiple optimal SVAR models

10Wild et al. (2010) do not use the term graphical VAR in the ex-
act same way we do, and use it more to refer to graphical modeling
in a VAR framework, including structural VAR. We use the term
here as described because having an explicit term helps in contrast-
ing GVAR from, e.g., SVAR.
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Temporal network

Exercising

Energetic

Contemporaneous network

Figure 2. A hypothetical example of two network structures
obtained from a GVAR analysis. The network on the left in-
dicates the temporal network, demonstrating that a variable
predicts another variable at the next time point. The network
on the right indicates the contemporaneous network, demon-
strating that two variables predict each other at the same time
point.

could exist. In the presence of weak auto-regressions, such
competing models might be hard to distinguish statistically.
For a principled way of dealing with such multiple solutions,
we refer the reader to Beltz and Molenaar (2016).

A second reason is that, like the GGM compared to a
DAG, GVAR handles covariation due to outside sources bet-
ter than SVAR. In both frameworks, an unmodeled outside
variable causing covariation at the contemporaneous time
level will lead to an edge or cluster of edges. Such a cluster
of edges would show up as an interpretable cluster of undi-
rected edges in the GVAR model, and as a cluster of directed
effects generating strong incorrect causal hypotheses in the
SVAR model.11

Finally, although less relevant for the discussion in this pa-
per (as our context is explanation rather than prediction), the
temporal model in GVAR is optimal for forecasting future
responses. While the structural model at contemporaneous
time helps in predicting what would happen under interven-
tions on a time-series, it is not needed in merely forecasting
new responses without interventions. As contemporaneous
effects are modeled as external unpredictable shocks to the
system, the temporal network of the GVAR model is suffi-
cient for forecasting data. As GVAR only differs from reg-
ular VAR in that the contemporaneous effects are modeled
as partial correlations rather than marginal correlations, the
same is true for regular VAR models. It is for this reason that
VAR is extensively utilized in prediction.

Estimation

Estimating saturated (fully connected temporal and con-
temporaneous networks) SVAR or GVAR models is straight-
forward. First, one needs to estimate temporal effects of a
regular VAR model by performing multivariate multiple re-
gression of all variables on the previous measurement occa-

sion,

yyyt = BBB21yyyt−1 + εεεt,

or by estimating univariate models for every variable,

yti = βββiyyyt−1 + εti,

in which βββi denotes the ith row of BBB21. Next one can invert
the variance–covariance matrix of the residuals to obtain a
GVAR model or one can transform this variance–covariance
matrix (e.g., by using a Cholesky decomposition on its in-
verse; Lütkepohl, 2005) to obtain an SVAR model (the tem-
poral effects need be transformed as well after obtaining a
contemporaneous model. This technique of obtaining an
SVAR model leads to multiple solutions (Beltz & Molenaar,
2016). Step-wise model selection can also be used to es-
timate sparse SVAR or GVAR models. SVAR models can
be estimated by using step-wise model selection in (unified)
SEM (Gates et al., 2010) and GVAR models can be estimated
by using step-wise model selection in latent network mod-
els (a generalization of SEM including GGMs; Epskamp,
Rhemtulla, & Borsboom, 2017). Missing data can be han-
dled in default ways of SEM or regression models (e.g., list-
wise deletion and full-information maximum likelihood), or
by using more sophisticated techniques such as Bayesian es-
timation (Schuurman, Grasman, & Hamaker, 2016) or the
Kalman filter (Harvey, 1990; Kim, Nelson, et al., 1999).

Novel estimation methods. A promising recent method
for estimating VAR models is the Bayesian dynamical SEM
implementation in version 8 of Mplus (Muthén & Muthén,
2017; Asparouhov, Hamaker, & Muthén, 2016), which in-
cludes handling of missing data, measurement invariance
and latent variables. Mplus can be used to estimate satu-
rated GVAR and SVAR models, and to perform model se-
lection in SVAR models or the temporal network of a GVAR
model. Model selection in the contemporaneous network of a
GVAR model is not yet implemented, but credibility intervals
around contemporaneous effects can be obtained by man-
ually inverting each sampled residual variance–covariance
matrix (these can be stored using the BPARAMETERS op-
tion).

When estimating GVAR models regularization methods
can be used similar to the estimation of GGMs on non-
temporally ordered data. Abegaz and Wit (2013) proposed
to apply LASSO estimation to jointly estimate the tempo-
ral and contemporaneous network structures using the mul-
tivariate regression with the covariance estimation (MRCE)
algorithm described by Rothman, Levina, and Zhu (2010).
MRCE involves iteratively optimizing BBB21, using cyclical-
coordinate descent, and KKK22, using the glasso algorithm

11It should be noted that if the data is generated by auto-
correlated unmodelled common causes, both SVAR and GVAR will
feature spurious temporal edges in addition to spurious contempo-
raneous edges.
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Table 2
Overview of Two Different Methods for Modeling Temporal and Contemporaneous Effects in Time-Series Data

Structural VAR Graphical VAR

Example

At−1

Bt−1

At

Bt

At−1

Bt−1

At

Bt

Model KKK(ΘΘΘ) set to be diagonal BBB21 = OOO and KKK(ΘΘΘ)
22 as GGM

Temporal network BBB21 BBB21

Contemporaneous network BBB22 (directed) proportional to KKK(ΘΘΘ)
22

Contemporaneous equivalence (III − BBB22)>KKK(ΘΘΘ)
22 (III − BBB22) KKK(ΘΘΘ)

22

Temporal equivalence (III − BBB22)−1BBB21 BBB21

Pros Can incorporate lag-0 causal effects;
temporal network estimation takes con-
temporaneous effects into account;
cyclic effects are identified with auto-
regressions.

Well identified; well defined saturated
model; allows sparse modeling of con-
temporaneous effects; latent variables
result in clusters of undirected edges.

Cons Multiple solutions possible; strong re-
liance on the assumption of no latent
variables; strong interpretation of the
direction of effect.

Potentially spurious edges in both the
temporal and contemporaneous net-
works; No direction of effect in contem-
poraneous network. Limited software
for confirmatory estimation.

Note. The dashed line indicates an edge that is present in the GVAR model but not in the corresponding SVAR model.

(Friedman et al., 2008, 2014). EBIC model selection can
be used to obtain the best performing model. This methodol-
ogy has been implemented in two open source R packages:
sparseTSCGM (Abegaz & Wit, 2015), which aims to esti-
mate the model on repeated multivariate genetic data, and
graphicalVAR (Epskamp, 2017b), which was designed to es-
timate the model on the psychological data of a single sub-
ject. The graphicalVAR package also allows for unregular-
ized multivariate estimation.

Temporally Ordered Data of Multiple Subjects

A type of data that is increasingly common due to the
emergence of ESM studies is time series of multiple sub-
jects (e.g., Bringmann et al., 2013, 2015; Mõttus et al., 2017;
Schmiedek, Lövdén, & Lindenberger, 2010; Wigman et al.,
2015). Such datasets pose a promising gateway to study
both intraindividual dynamics and between-subjects overlap
as well as their differences. Here, we assume that the number

of time points might differ per person and that measurement
occasions are nested in people. We can model the temporal
data of every person with an individual GVAR model (drop-
ping subscripts for block matrices used above for notational
clarity):

yyy[t,p] = µµµp + BBBp

(
yyy[t−1,p] − µµµp

)
+ εεε[t,p]

εεε[T,p] ∼ N(000,ΘΘΘp)

ΘΘΘ−1
p = KKK(ΘΘΘ)

p ,

in which µµµp indicates the stationary mean vector of subject
p (which enters the model because we can no longer assume
within-subject means are zero without loss of generality), BBBp

encodes the person-specific temporal network, and KKK(ΘΘΘ)
p en-

codes the person-specific contemporaneous GGM.
Multilevel modeling. To gain insight in the general net-

work structure over subjects we can investigate the individ-
ual networks at a second level. Doing so is termed multi-
level modeling, explained in more detail in section 2.1 of the
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supplementary materials. Let BBB∗ and KKK(ΘΘΘ)
∗ encode the ex-

pected temporal and contemporaneous network when select-
ing a person at random. Furthermore, we can assume without
loss of generality that data are grand-mean centered. We then
obtain

E (µµµP) = 000
E (BBBP) = BBB∗

E
(
KKK(ΘΘΘ)

P

)
= KKK(ΘΘΘ)

∗ .

Here, BBB∗ and KKK(ΘΘΘ)
∗ now encode the average parameters in the

population: the fixed effects. Deviations from these fixed ef-
fects, such as BBBp − BBB∗, are often called random effects. Be-
sides the individual network structures, researchers often aim
to estimate the structure and parameters of these fixed effects
because these tell us something about the average intraindi-
vidual effect. Researchers also aim to estimate the variance–
covariance structure of the random effects because it tell us
something about individual differences (Bringmann et al.,
2013).

The random effects can be modeled by assuming a sec-
ond level normal distribution on all the parameters. This can
be complicated, however, especially when modeling partial
correlation coefficients in such a way (e.g., any hierarchical
model for KKK(ΘΘΘ) needs to take into account that this matrix
must remain positive definite). The interpretation of, for ex-
ample, correlations between different temporal or contempo-
raneous edges is also difficult. Therefore, we only focus here
on a subset of the parameters where we can easily interpret
the second-level model: the mean structure. As a result, if
a multivariate normal is assumed for all parameters, then it
is also assumed for the marginal distribution of the means—
regardless of other parameters:

µµµP ∼ N (000,ΩΩΩ) .

Again, we can invert the variance–covariance matrix to ob-
tain a GGM,

KKK(ΩΩΩ) = ΩΩΩ−1,

which corresponds to the between-subjects network, a net-
work between stationary means of different subjects, de-
scribed earlier (not to be confused with a cross-sectional
network, see Appendix A). As such, estimating the GVAR
model on n > 1 time-series analysis allows for the separa-
tion of variance into three distinct network structures: tempo-
ral networks, contemporaneous networks, and the between-
subjects network.

Estimation

Pooled and individual LASSO estimation. Table 3 de-
scribes several estimation procedures for the GVAR model
in n > 1 datasets. First, we can estimate a GVAR model
for every subject to obtain subject-specific estimates for the

temporal and contemporaneous networks. Similarly, we can
estimate fixed-effects networks by estimating a GVAR model
on the entire within-subjects centered dataset, using the sam-
ple means of every subject on every variable as a plug-in
for the within-subject means. Consequently, we can esti-
mate the between-subjects network by estimating a GGM
on the sample means of each subject on all variables. We
can readily apply the LASSO regularization methods de-
scribed earlier for this purpose: the methodology outlined
by Abegaz and Wit (2013) to estimate temporal and contem-
poraneous networks and the methodology outlined by Foygel
and Drton (2010) to estimate the between-subjects GGM. We
term this framework pooled and individual LASSO estima-
tion and have implemented it in the R package graphicalVAR
(Epskamp, 2017b). The performance of pooled and individ-
ual LASSO estimation is assessed in simulations reported in
section 3.2 of the supplementary materials.

Multilevel estimation. The second and third procedures
described in Table 3 make use of multilevel modeling
(Hamaker, 2012). Two main benefits of this approach are (1)
instead of estimating the VAR model in each subject, only
the fixed effects and variance–covariance of the random ef-
fects need to be estimated. and (2) afterwards, estimates of
subject-specific parameters can be obtained, which are some-
what pulled together (termed shrinkage). Shrinkage allows
the estimation of the model for one subject to borrow in-
formation from other subjects. Multilevel estimation can be
performed by integrating over the distribution of the random
effects or by specifying the multivariate model using hierar-
chical Bayesian Monte-Carlo sampling methods (Gelman &
Hill, 2006; Schuurman, Grasman, & Hamaker, 2016).

Multivariate Bayesian multilevel. Bayesian multivari-
ate estimation has proven to be powerful in estimating such
models, especially given its flexibility in adding measure-
ment error, latent variables and in handling missing data
(Schuurman, Houtveen, & Hamaker, 2015). Recently, the
dynamic SEM methodology implemented in Mplus ver-
sion 8 (Muthén & Muthén, 2017; Asparouhov et al., 2016)
has made estimation of multivariate multilevel VAR models
much faster and more user-friendly than other Bayesian soft-
ware routines. Specifying a temporal VAR model with cor-
related random effects is straightforward and relatively fast
to compute with a moderate number of variables (e.g., 6).
At the time of writing, Mplus does not return partial corre-
lations by default, but these can be obtained by using the
BPARAMETERS option and manually inverting the sam-
pled variance–covariance matrices. Mplus allows for spec-
ifying random effects on the contemporaneous covariances
and thus, by extension, allows for estimating random con-
temporaneous networks in addition to random temporal net-
works. Specifying such a model can be done by specifying
dummy latent variables for the residual covariance between
each pair of variables (a prior guess on the sign of the co-
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variance is needed). Doing so, however, can significantly in-
crease computation length especially when all random effects
are allowed to correlate. To facilitate estimation, we have im-
plemented a function generating Mplus code for a multilevel
GVAR model and subsequently running the model using the
MplusAutomation package (Hallquist & Wiley, 2017) in ver-
sion 0.4 of the mlVAR package, which can be called using
estimator = "Mplus" and requires the Mplus program to
be installed.

Two-step multilevel VAR. A downside of multivariate
estimation is that the number of random effect covariances
to be estimated increases quadratically with the number of
variables. Forcing random effects to be uncorrelated helps,
but places strict assumptions on the model. Bringmann et
al. (2013) proposed to estimate multilevel VAR models us-
ing univariate models instead, using a frequentist estimation
procedure. In this work, the multilevel VAR model is es-
timated by sequentially estimating univariate multilevel re-
gression models of one variable given all lagged variables.
Doing so ignores several correlations of random effects be-
cause many parameters are not estimated in the same model,
simplifying the analysis: only correlations between incom-
ing edges to the same node and the intercept of that node
are included in the univariate models. This method scales
up well to approximately six to eight variables when estimat-
ing correlated random effects and around 20 variables when
estimating orthogonal random effects (or by using a moving
window approach; Bringmann et al., 2015). Of note, when
specifying orthogonal random effects not all random effects
are assumed to be uncorrelated, merely the ones used in the
same univariate model.

The methodology of Bringmann et al. (2013) does not es-
timate contemporaneous or between-subjects networks. To
this end, we extended the algorithm in a framework we term
two-step multilevel VAR. The details of this estimation pro-
cedure are explained in Section 2 of the supplementary ma-
terials. In short, we extend the methodology of Bringmann
et al. (2013) by within-subject centering and by adding sub-
ject sample means as between-subjects predictors (as dis-
cussed by e.g., Hoffman & Stawski, 2009; Curran & Bauer,
2011; Hamaker & Grasman, 2014). This allows us to esti-
mate between-subjects networks by collecting regression co-
efficients as in Equation (6) and to symmetrize the result-
ing matrix.12 Obtaining the between-subjects effects using
regression coefficients rather than correlating the estimated
means leads to standard errors that can be used to select
significant edges. In a second step, we take the residuals
of the first analysis and again perform sequential univariate
multilevel regression models to predict each residual from all
other residuals in the same measurement occasion. Again,
these can be collected, as in Equation (6), and symmetrized
to obtain contemporaneous networks. By using univariate
regressions, rather than simply correlating the residuals, we

can impose multilevel structure on the partial correlations in
order to estimate fixed and random effects.13 Networks can
be thresholded by removing all effects that are not signif-
icant. For the between-subjects and contemporaneous net-
works, this results in two p values for every edge—either
both can be required to be significant (“and” rule) or only
one (“or” rule). Using the “and” rule means erring more on
the side of caution (sparser network), whereas using the “or”
rule means erring more on the side of discovery. We have
implemented two-step multilevel VAR in the mlVAR pack-
age, which can be called using estimator = "lmer" (the
default).

Choosing the estimation method. The choice of which
estimator to use is not trivial and depends on the interests of
the researcher. In Table 3 we list some pros and cons of each
of the methodologies. In particular, multilevel estimation can
be very complicated and is harder in high-dimensional set-
tings. Assuming normally distributed parameters can also be
problematic because doing so imposes that subjects cannot
differ on the structure of the networks, merely on their pa-
rameterization. When a parameter (e.g., a temporal edge) is
zero in some subjects but nonzero in others, then this param-
eter cannot be normally distributed (the distribution would
peak at 0). Therefore, it is currently hard to estimate dif-
ferently structured individual networks (different edges set
to be exactly 0 between subjects) in multilevel estimation.
Nonetheless, multilevel estimation particularly shines in that
when estimating an individual network, researchers can bor-
row information from other subjects. We have performed
simulation studies to assess the performance of the two pro-
posed methods in this paper: pooled and individual LASSO
estimation and two-step multilevel VAR. We report the re-
sults of these studies in Section 3.2 of the supplementary ma-
terials, which shows that both methods adequately detect the
true network structures by increasing sample size. Having
more time points per subject helps to estimate the contem-
poraneous and temporal networks, and having more subjects
helps to estimate the between-subject networks. Two step
multilevel VAR performs well in estimating intraindividual
networks when the number of observations are low, but does
not perform subject-specific model selection: all estimated
intra-individual networks are saturated and contain all edges.

GIMME. Finally, when analyzing n > 1 data, another
option is to estimate SVAR models instead. A promising

12Standardizing regression parameters from nodewise multilevel
models to partial correlation coefficients does not lead to perfectly
identical estimates.

13Estimating correlated random effects for regression coefficients
is straightforward while estimating correlated random effects on
covariances or correlations is not due to a requirement that these
must add to a positive definite variance–covariance matrix; fixed
effects covariances plus multivariate normally distributed random
effects may lead to intra-individual variance–covariances that are
not positive-definite.
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Table 3
Three Methods of Estimating GVAR Models With n > 1 Subjects

Pooled and individual LASSO
estimation

Bayesian multilevel Two-step frequentist multilevel

Software graphicalVAR (Epskamp,
2017b); sparseTSCGM
(Abegaz & Wit, 2015).

MPlus 8 (Muthén & Muthén,
2017; Asparouhov et al.,
2016); mlVAR (wrapper around
Mplus).

mlVAR (Epskamp, Deserno, &
Bringmann, 2017).

Estimation (1) Joint multivariate LASSO
estimation with EBIC model
selection (Abegaz & Wit, 2013)
of within-subjects centered data
to obtain fixed effects tempo-
ral and contemporaneous net-
works. (2) glasso algorithm
with EBIC model selection
(Foygel & Drton, 2010) on
sample means of subjects to ob-
tain between-subject network.
(3) Step (1) repeated for each
individual dataset to obtain
subject-specific networks.

MCMC sampling from mul-
tivariate hierarchical model
(e.g., Schuurman, Grasman, &
Hamaker, 2016).

(1) Sequential univariate
multilevel regression models
on previous measurement
(similar to Bringmann et al.,
2013), with within-subject
centered lagged variables as
within-subjects level predictors
and sample-means of all other
variables as between-subjects
predictor. (2) Sequential
multilevel regression models
using the residuals of (1):
residuals of one variable are
predicted by residuals of all
other variables in the same
measurement occasion.

Pros Fast estimation of fixed effects;
scales up well to large numbers
of nodes; model selection in
individual networks; temporal
and contemporaneous networks
obtained in the same analysis.

Borrowing information in
individual network estimation
from other subjects; all model
parameters and random-effect
(co)variances can be estimated;
credibility intervals can be
obtained for edges and descrip-
tive statistics (e.g., centrality;
density); advanced extensions
such as measurement error
and latent variable modeling
possible; powerful handling of
missing values.

Borrowing information in indi-
vidual network estimation from
other subjects; scales up well to
8 nodes (correlated random ef-
fects) or 20 nodes (orthogonal
random effects); many random
effect variances correlations can
be estimated; fast estimation of
individual networks.

Cons Fixed effects estimated on
pooled data; Subject specific
networks estimated without
borrowing information from
other subjects (no multilevel
structure); between-subjects
network estimated in a different
model; very slow to estimate
subject-specific networks; poor
handling of missing values.

Relatively slow estimation, es-
pecially in higher dimensional
models; no model selection
(thresholding possible via cred-
ibility intervals); complicated
to estimate contemporaneous
random effects.

Slow estimation in larger
datasets; no model selection
(fixed effects can be thresh-
olded using significance);
combination of many different
models; does not scale up well
past 20 nodes; poor handling of
missing values.

Note. The software listed only concerns user-friendly automated software because all these models could readily be implemented in most
programming languages or Bayesian sampler packages.
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estimation procedure to estimate such models over many
individuals, while dealing with potential heterogeneity, is
“group iterative multiple model estimation” (GIMME; Gates
& Molenaar, 2012), which is implemented in R using the
gimme package (Lane, Gates, Molenaar, Hallquist, & Pike,
2016). In GIMME, no multilevel structure is imposed and
subject-specific networks are allowed to differ in structure.
Information from other subjects is borrowed, however, in that
the structure of individual networks can be based on other
subjects (e.g., an edge can be included because it is present
in many other subjects). No shrinkage is induced on the
parameter estimates that are nonzero (as would be the case
in multilevel or hierarchical Bayesian modeling). A vari-
ant of GIMME that estimates the GVAR or a combination
of structural and GVAR models has not yet been developed
and could pose a promising estimation technique for future
research.

Empirical Example 1: Reanalysis of Mõttus et al. (2017)

We reanalyzed the data of Mõttus et al. (2017) to pro-
vide an empirical example of the multilevel VAR methods
described above. This data consists of two independent
ESM samples, in which items tapping three of the five Five-
Factor Model (neuroticism, extraversion, and conscientious-
ness; McCrae & John, 1992) domains were administered, as
was an additional question that asked participants how much
they had exercised since the preceding measurement occa-
sion. Sample 1 consisted of 26 people providing 1,323 ob-
servations in total, and Sample 2 consisted of 62 people pro-
viding a total of 2,193 observations. Participants in Sample 1
answered questions three times per day, whereas participants
in Sample 2 answered questions five times per day. In both
samples, the minimum time between measurements was two
hours. For more information about the samples and the spe-
cific questions asked, we refer readers to Mõttus et al. (2017).

To obtain an easier and more interpretable example, we
first only analyzed questions aimed to measure the extraver-
sion trait and the question measuring exercise. This lead
to five variables of interest: questions pertaining to feeling
outgoing, energetic, adventurous, or happy and the question
measuring participants’ exercise habits. We analyzed the
data using the two-step multilevel procedure as described in
detail in the Section 2 of the supplementary materials. We
used the mlVAR package, version 0.4, for the estimation of
this model. Because the number of variables was small, we
estimated the model using correlated temporal and contem-
poraneous random effects. We ran the model separately for
both samples and computed the fixed effects for the tempo-
ral, contemporaneous, and between-subjects networks. Cor-
relations of the edge weights indicated that all three net-
works showed high correspondence between the two samples
(temporal network: 0.82, contemporaneous network: 0.94,
between-subjects network: 0.70). Owing to the degree of

replicability, we combined the two samples and estimated
the model on the combined data.

Results. Figure 3 shows the estimated fixed effects of
the temporal, contemporaneous, and between-subjects net-
work. In these figures, only significant edges (α = 0.05)
are shown. In the contemporaneous and between-subjects
networks, an edge was retained if one of the two regressions
on which the partial correlation is based was significant (the
so-called “or” rule; van Borkulo et al., 2014). These results
are in line with the hypothetical example shown in Figure 2:
People who exercised were more energetic while exercising
and less energetic after exercising. In the between-subjects
network, no relationship between exercising and energy was
found. The between-subjects network, however, showed a
strong relationship between feeling adventurous and exercis-
ing: People who, on average, exercised more also felt, on av-
erage, more adventurous. This relationship was not present
in the temporal network and much weaker in the contempora-
neous network. Also noteworthy is that people were less out-
going after exercising. Figure 4 shows the standard deviation
of the random effects in the temporal and contemporaneous
networks. Although not many differences can be detected in
the temporal network, the contemporaneous network shows
strong differences: People mostly differed in their relation-
ship between exercising and feeling energetic.

In addition to using only the extraversion and exercise
items, we also ran the model on all 17 administered items
in the dataset. In this analysis, we used orthogonal random
effects to estimate the model because correlated random ef-
fects cannot be estimated with such a large number of vari-
ables. Figure 5 shows the estimated fixed effects of the three
network structures; it can be seen that indicators of the three
traits tend to cluster together in all three networks. Regard-
ing the node exercise, we found the same relationships be-
tween exercise, energetic, and adventurous (also found in the
previous example) in the larger networks. Furthermore, we
noted that exercising was connected to feeling angry in the
between-subjects network but not in the other networks. Fi-
nally, there was a between-subjects connection between exer-
cising and feeling self-disciplined: People who, on average,
exercised more also felt, on average, more self-disciplined.

Empirical Example 2: Reanalysis of Bringmann et al.
(2013)

To showcase additional information that can be obtained
using the GGM model, we reanalyzed the dataset used and
made publicly available by Bringmann et al. (2013), which
has been collected by Geschwind et al. (2011). This dataset
contains ESM measures of 129 participants, which was col-
lected in two periods over 6 days each: a baseline period
and a posttreatment period (mindfulness treatment and a con-
trol group). Participants answered 60 measurements per pe-
riod. Similar to Figure 1 of Bringmann et al. (2013), we



DISCOVERING PSYCHOLOGICAL DYNAMICS 17

Outgoing

Energetic

Adventurous

Happy

Exercise

Maximum: 0.2

Temporal

Outgoing

Energetic

Adventurous

Happy

Exercise

Maximum: 0.5

Contemporaneous

Outgoing

Energetic

Adventurous

Happy

Exercise

Maximum: 0.5

Between−subjects

Figure 3. The estimated fixed effects of the three network structures obtainable in multilevel VAR. The model is based on
ESM data of 88 people providing a total of 3,516 observations. Due to differences in the scale of the networks, the temporal
network was drawn with a different maximum value (i.e., the value indicating the strongest edge in the network) than the
contemporaneous and between-subjects networks. Edges that were not significantly different from zero were removed from
the networks.
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Figure 4. The networks showing the standard deviation of
random effects in the temporal and contemporaneous net-
works. Due to scale differences, networks were plotted using
different maximum values.

analyzed only the baseline dataset on the six items selected
by Bringmann et al. (2013). We estimated the networks us-
ing three modeling frameworks discussed in Table 3. First,
we analyze data using multilevel Bayesian estimation using
Mplus version 8 (model generated using the mlVAR pack-
age). We estimated correlated random effects for the tem-
poral effects but only fixed effects for the contemporaneous
effects (making these random led to slow convergence). The
model was estimated using three chains that ran until conver-
gence. Nights were handled by adding a row of missing val-
ues between consecutive days. Second, we analyzed the data
using two-step multilevel estimation as implemented in the
mlVAR package, using an “and” rule and estimating corre-
lated random temporal and contemporaneous effects. Finally,
we estimated the data using pooled and individual LASSO
estimation using the graphicalVAR package, using γ = 0.25.

In the final two analyses, we did not regress the first mea-
surement of the day on the last measurement of the previous
day, and removed all pairs of lagged and current variables
that contained missing responses. The final sample size was
5,927 observations. Edges were retained if they were signifi-
cant at the α = 0.05 level, or if 0 was not included in the 95%
credibility interval.

Results. Figure 6 shows the resulting network struc-
tures, and shows that all three methods are mostly aligned.
Unsurprisingly, the temporal networks are very similar to
those reported by Bringmann et al. (2013).14 Both the tem-
poral and contemporaneous network are in line with what
would be expected under a unidimensional auto-correlated
latent variable model (many edges selected, low-rank struc-
ture, edges of expected sign) with the exception of the
positive temporal edge from “fearful” to “pleasant” in the
two-step multilevel network (which was not selected by the
other methods). Of note is that Bayesian multilevel estima-
tion resulted in a sparser temporal network. Remarkable is
the positive edge between “sad” and “relaxed” in the two-
step multilevel between-subjects network, which is based
on two significant positive Level 2 regression coefficients
(β = 0.202, p = 0.046 and β = 0.151, p = 0.036) where the
estimated between-subjects correlation is strongly negative
(−0.53). This edge is especially remarkable since both nodes
are otherwise strongly connected. The Bayesian multilevel
between-subjects network showed a similar positive edge be-
tween “cheerful” and “worry”. This is noteworthy because
under a unidimensional factor model, we would not expect

14The networks differ because the estimation of temporal effects
differs in that measures are within-subjects centered and subject
means are included as Level 2 predictors.
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Figure 5. The estimated fixed effects of the three network structures based on all 17 variables administered. Only significant
edges are shown. Legend: 1 = “Worried”; 2 = “Organized”; 3 = “Ambitious”; 4 = “Depressed”; 5 = “Outgoing”; 6 = “Self-
Conscious”; 7 = “Self-Disciplined”; 8 = “Energetic”; 9 = “Frustrated”; 10 = “Focused”; 11 = “Guilty”; 12 = “Adventurous”;
13 = “Happy”; 14 = “Control”; 15 = “Achieved”; 16 = “Angry”; 17 = “Exercise.”
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(a) Fixed effect network structures estimated via multilevel Bayesian estimation.
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(b) Fixed effect network structures estimated via two-step multilevel estimation.
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(c) Fixed effect network structures estimated via pooled and individual LASSO estmiation
Figure 6. Reanalysis of the Geschwind et al. (2011) dataset used by Bringmann et al. (2013).
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partial correlation coefficients to switch sign from marginal
correlation coefficients (Holland & Rosenbaum, 1986; van
Bork, Grasman, & Waldorp, 2016). A possible way the
partial correlation coefficient switches sign is if it has been
conditioned on one or more common effects between the
two variables of interest (in this case, potentially “worry,”
“pleasant,” or “fearful”). Of course, these effects must be
interpreted with great care, especially given the high p val-
ues; we did not control for multiple comparisons, and the
same edges are not retained in the other methods. Still, it
is noteworthy that if this edge is weak or nonexistent, the
between-subjects structure is still not in line with a unidi-
mensional factor model. In such a factor model, “sad” and
“relaxed”(which feature the most connections) would be ex-
pected to have a strong negative edge between them (a de-
pression factor would lead to “sad” having a strong positive
factor loading and “relaxed” having a strong negative factor
loading).

Within- and between-subjects effects

This paper characterized between-subjects effects (rela-
tionships between stationary means of subjects) in two oc-
casions: first in our discussion of cross-sectional data and
second in our discussion of n > 1 temporally ordered data. In
stark contrast to prior work, criticizing cross-sectional anal-
ysis for not reflecting within-subjects effects (Bos & Wan-
ders, 2016; Bos et al., 2017; Molenaar, 2004), we interpreted
cross-sectional networks to potentially reflect a between-
subjects structure, depending on the type of questions asked.
Furthermore, in contrast to prior work on multilevel VAR
modeling (e.g., Bringmann et al., 2013, 2015; Wigman et al.,
2015; Pe et al., 2015), we conceptualized between-subjects
effects in addition to the within-subjects effects in a separate
GGM. This raises the question on how such models could
be interpreted. In particular, if edges in the GGM are in-
terpreted as generating hypotheses to potential causal path-
ways, the question is raised how such causal effects can oc-
cur at the between-subjects level. This section discusses the
topic of causation at the between-subjects level. Here, we
interpret the stationary means as being locally stationary: the
average of a subject in a relatively short time span of mea-
surement (e.g., a few weeks). As such, we do not interpret
the mean vector µµµP as a lifetime average. Instead, we as-
sume it could change, potentially due to experimental inter-
vention. As a result, we argue that the between-subjects net-
work can also be indicative of potential causal pathways—
regardless of whether it is estimated from a cross-sectional
interview concerning variables that are not expected to vary
much over time or obtained from estimating the means from
time-series data. To simplify the argumentation, we do not
discuss separate temporal and contemporaneous networks
but combined them into within-subjects networks (a GGM
of within-subject data without taking temporal ordering into

account).
Simpsons paradox. Hamaker (2012) described an ex-

ample of how within- and between-subject effects can
strongly differ from each other. Suppose we let people write
several texts, and we measure the number of spelling errors
they make and the number of words per minute they type
(typing speed). We would expect to see the seemingly para-
doxical network structures shown in Figure 7, Panel (a). We
would expect a positive relationship in the within-subjects
network (e.g., typing faster than your average leads to mak-
ing more errors). Conversely, we would expect a negative re-
lationship in the between-subject network (e.g., people who
type fast, on average, generally make fewer spelling errors).
This is because people who type fast, on average, are likely
to be more skilled in writing (e.g., a courtroom stenographer)
and are less prone to make a lot of spelling errors, compared
to someone who types infrequently. Panel (b) of Figure 7
shows another example in which the structures might differ
(Hoffman, 2015; provided by Hamaker, 2017). These net-
work structures show that when people exert more physical
activity than their average they likely experience an elevated
heart rate, while people who on average are often physically
active likely have a lower average heart rate. Such a different
effect depending on the level of analysis is well known in the
statistical literature as Simpson’s paradox (Simpson, 1951).

Interventionist accounts of causation. The different
ways of thinking about the effects of manipulations in time-
series models can be organized in terms recently devel-
oped from interventionist accounts of causation (Woodward,
2005). According to Woodward, causation is fleshed out
in terms of interventions: X is a cause of Y if an inter-
vention (natural or experimental) on X leads to a change
in Y . Statistically, the interventionist account is compat-
ible with, for example, Pearl’s (2000) semantics in terms
of a “do-operator.” Here, an intervention on X is repre-
sented as Do (X = x), and the causal effect on Y is for-
mally expressed as E (Y | Do (X = x)). Pearl distinguished
this from the classical statistical association, in which no
intervention is present, and we get the ordinary regression
E (Y | See (X = x)). This notation is useful here, because it
can be used to show how different kinds of causal manipula-
tions, each at the intraindividual level, can produce a signal in
either the between-subjects or the within-subjects network.

Cashing out causal effects in terms of interventions is use-
ful for understanding the intervention Do (X = x). We can
think of this in terms of a random shock to the system, which
sets X to value x at a particular time point and evaluates the
effect on another variable Y shortly afterwards. If we want to
gauge this type of causal relationship, we might look at the
within-subjects VAR model. Consider Hamaker’s (2012) ex-
ample regarding typing errors: If a researcher forced a person
to type very fast, that researcher would need to evaluate the
within-subject data, which would show a positive association



DISCOVERING PSYCHOLOGICAL DYNAMICS 21

Typing
speed

Spelling
errors

Within−subjects

Typing
speed

Spelling
errors

Between−subjects 

(a) Example based on Hamaker (2012).
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(b) Example based on Hoffman (2015); Hamaker (2017).
Figure 7. Two hypothetical examples of differing within- and between-subject networks. The networks on the left indicates
the within-subject network, showing that personal deviations from the means predict each other at the same time point, and
the networks on the right indicates the between-subjects network, showing how the means of different subjects relate to one
another.

between typing speed and the number of errors. In this ex-
ample, between-subjects data would be misleading because
individual differences would probably yield a negative corre-
lation between speed and accuracy—faster typists are more
likely to make less errors.

Interventions at the mean level. However, we can also
think of a manipulation that sets X to value x in a differ-
ent way, for instance, by inducing a long-term change in
the system that leads it to converge on X = x in expecta-
tion. To evaluate the effect of this type of intervention, it
is important to consider the behavior of the system as it re-
lates to the changes of the intercept of X. When analyzing
time-series data gathered in a relatively short time-span, the
within-subjects VAR network as discussed here cannot rep-
resent the relevant effects, because it assumes stationarity.
However, such effects will be visible in the between-subjects
network, which may thus contain important clues to the be-
havior of the system under potential changes in the intercept
of one variable. In terms of Panel (b) of Figure 7, if we are
interested in the effect of changing someone structurally—
reducing the heart rate of a person on average—our preferred
source of hypothesis generation would likely stem from the

between-subjects model, as the corresponding within-subject
model using the methods described in this paper only models
deviations from the stationary mean. Such hypotheses could
then be further investigated by using experimental design or
lengthier longitudinal data analysis.

Many such examples can be envisioned, especially in the
field of psychopathology. For instance, short-term deviations
from the mean in abusing a substance might not immedi-
ately develop tolerance or lead to one suffering from work
or life inferences, but a subject who abuses a substance on
average over a long time period might develop these prob-
lems (example based on variables used by Rhemtulla et al.,
2016). A between-subjects network could similarly show
that loneliness mediates the effect of losing a spouse on de-
pressive symptoms (Fried et al., 2015) or highlight the pos-
sible effects of childhood trauma and urbanization on psy-
chotic symptoms (Isvoranu et al., 2016, 2017)—both cases
in which within-subjects networks based on short-term de-
viations from the average seem less applicable. This analy-
sis is important because it shows that, even though relevant
causal interventions in psychology will typically operate at
the intra-individual level, evidence for the effect of such in-
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terventions may arise at either the within- or the between-
subjects level depending on the nature of the intervention.

Discussion

We discussed the Gaussian graphical model (GGM;
Lauritzen, 1996), an undirected network model of partial cor-
relation coefficients, and discussed its utility in the analysis
of psychological datasets. The GGM presents a promising
exploratory data analysis tool because of several reasons: (1)
The GGM is well identified, has no equivalent models, and
exploratory search algorithms perform well in capturing the
true GGM structure. On the other hand, directed network
estimation is often poorly identified and leads to edges es-
timated in the wrong direction. (2) causal effects between
variables result in an edge, whereas the lack of a causal effect
results in no edge, except in the presence of latent variables
or a common effect. The GGM can, therefore, be seen as hy-
pothesis generating structures that highlight potential causal
pathways. (3) Latent variables as common causes emerge in
the GGM as low-rank clusters and can also be detected. (4)
Edges of the GGM can also be interpreted without reliance
on a causal interpretation and merely used to show which
variables predict each other. (5) Undirected models can be
used and interpreted as causal data-generating process and
have been used as such in several fields of research.

The GGM can readily be estimated on any dataset that
contains multiple observations of the same variables (e.g.,
multiple people in cross-sectional data or multiple responses
in time-series data). LASSO regularization methods per-
form especially well in estimating such a GGM structure.
In temporally ordered data (e.g., n = 1 time series), the
graphical VAR (GVAR; Wild et al., 2010) model general-
izes the GGM to incorporate temporal effects. We described
that two network structures can be obtained: a temporal net-
work, which is a directed network of regression coefficients
between lagged and current variables, and a contemporane-
ous network, which is a GGM describing the relationships
that remain after controlling for temporal effects. In tem-
porally ordered data of multiple subjects (e.g., n > 1 time
series), the natural combination of cross sectional and time-
series data came by adding a third network structure: the
between-subjects network, which is a GGM that describes
relationships between the stationary means of subjects. We
proposed two methods to estimate the three network struc-
tures: (1) two-step multilevel estimation, which we imple-
mented in the open source R package mlVAR, and (2) pooled
and individual VAR model estimations using LASSO regu-
larization, which we implemented in the open source R pack-
age graphicalVAR.

Limitations and Challenges

Multilevel estimation. The presented methods are not
without problems and have several limitations. In regards

to multilevel estimation, first, multivariate estimation of the
multilevel VAR model is not yet feasible for larger datasets.
As such, the proposed two-step multilevel VAR combines
univariate models. Doing so, however, means that not all pa-
rameters are in the same model. In addition, univariate mod-
els do not readily provide estimates of the contemporaneous
networks, which must be estimated in a second step. Second,
even when multivariate estimation is possible, it is still chal-
lenging to estimate a multilevel model on contemporaneous
networks due to the requirement of positive definite matri-
ces. Third, when more than approximately eight variables are
measured, estimating the multilevel models with correlated
random effects is no longer feasible in open source software.
In this case, orthogonal random effects can be used, which
enforce parsimony on the model that may not be plausible.
Finally, even when orthogonal estimation is used, multilevel
analysis runs very slowly in models with more than 20 vari-
ables. As such, multilevel VAR analysis of high-dimensional
datasets is not yet feasible. To this end, we discussed pool-
ing within-subject centered data and estimating fixed-effects
models using LASSO regularization (Abegaz & Wit, 2013).
This performed en par with multilevel estimation in higher
sample sizes and allows researchers to scale up the analysis.
However, individual network estimation using separate VAR
models does not borrow information from other subjects and
performs poorly in low sample sizes. Promising develop-
ments are new LASSO methods in which shrinkage from
subject-specific parameters to their mean is attained through
penalization rather than hierarchical modeling (Hastie, Tib-
shirani, & Wainwright, 2015). Future research should in-
vestigate the utility of such models in estimating individual
network structures that might differ in structure but borrow
information from other subjects in its estimation.

VAR modeling assumptions. These limitations on the
estimation methods come with more limitations in the sta-
tistical models themselves. VAR modeling, especially, is
not without problems and faces severe challenges (Hamaker,
Ceulemans, Grasman, & Tuerlinckx, 2015; Hamaker &
Wichers, 2017). We made several assumptions that can be
problematic. For instance, in characterizing the likelihood of
time-series data, we need to assume that the conditional dis-
tribution of variables at time t given time t − 1 are the same
for all t. That raises two distinct assumptions: (1) The differ-
ence in time between measurements are roughly equal, and
(2) the parameters do not change over time. Equidistance in
time is especially important for the interpretation of temporal
networks. Promising work is being done in this area where
VAR networks can be estimated on nonequidistant datasets
(Driver, Oud, & Voelkle, 2017; Oravecz, Tuerlinckx, & Van-
dekerckhove, 2009; Oud & Jansen, 2000). The assumption
of stationarity is needed to estimate structures when data are
limited but might not be tenable especially in longer time
series (Rovine & Walls, 2006). Promising time-varying es-



DISCOVERING PSYCHOLOGICAL DYNAMICS 23

timation procedures are being developed (Bringmann et al.,
2016; Haslbeck & Waldorp, 2016a), but are not yet extended
to the GVAR framework. Furthermore, the interpretation of
temporal coefficients when drawn as a network is not without
discussion, and several different methods for standardization
exist (Bulteel, Tuerlinckx, Brose, & Ceulemans, 2016; Schu-
urman, Ferrer, de Boer-Sonnenschein, & Hamaker, 2016).15

Normality. Another particularly important assumption
made in this paper is that of multivariate normality. Indeed,
Equation (1) makes this assumption and all other equations
follow from this. The assumption of normality is not without
problems (Terluin, de Boer, & de Vet, 2016). However, it is
not one that is easily solved. This is because there can be
many reasons why data are not normally distributed. When
data are not normally distributed, then they cannot be ex-
plained properly using only the means vector and variance–
covariance matrix. As a result, the GGM does not properly
characterize the joint likelihood function. Three conceivable
ways can lead to data not being distributed normally: (1) the
data are measured on a different scale (Stevens, 1946), (2) the
data are continuous but do not follow a normal density, and
(3) there are nonlinear relationships between variables. In
the first case, a different graphical model can be used, such
as the Ising model for binary data (Epskamp et al., in press;
van Borkulo et al., 2014) or a mixed graphical model for cat-
egorical and Poisson-distributed variables as well as binary
and Gaussian variables (Haslbeck & Waldorp, 2016b). Such
models have yet to be extended to time-series analysis, es-
pecially in separating temporal and contemporaneous effects
as the GVAR model does. When data are continuous but not
normal, multiple reasons can (again) attribute to this. When
the underlying process is normal but the measured variables
are on a transformed scale, transforming data back to normal
should offer a solution (Liu, Lafferty, & Wasserman, 2009),
but when the process itself is nonnormal, such as skewed
residuals, the entire modeling framework does not correctly
capture the likelihood. Finally, multivariate normality as-
sumes all relationships between variables are linear. When
this is not the case, the GGM and VAR model (which fit lin-
ear effects) will not properly describe the data. We encourage
future researchers to focus on the problem of normality and
to develop new methods of overcoming these challenges.

Interpretation. Finally, it should be noted that all net-
work structures only generate hypotheses and are in no way
confirmatory. The analyses showcased in this paper are
exploratory and allow researchers to obtain insights into
the predictive relationships present in the data—regardless
of theory with respect to the data-generating model. Un-
der the assumptions of multivariate normality, stationarity,
and the Lag-1 factorization, the networks show how vari-
ables predict each other over time (temporal network), within
time (contemporaneous network), and on average (between-
subjects network). Furthermore, during the thresholding of

edges in the multilevel analyses, we did not apply a correc-
tion for multiple testing by default. We deliberately chose
this because our aim was to present exploratory hypothesis-
generating structures, and not correcting for multiple testing
yields greater sensitivity.

Conclusion

This paper provides a methodological overview of how the
GGM can be used to gain exploratory insight into the poten-
tial dynamics present in psychological data. The GGM can
be used to map out unique variance in cross-sectional data or
at the contemporaneous and between-subjects levels of time-
series analysis. We contrasted this method to exploratory es-
timation of causal models: DAGs and SVAR. While losing
information on the direction of effect, estimating GGMs of-
fers an attractive alternative in that these models are uniquely
identified, well parameterized, closely related to causal mod-
els and also offer exploratory insight on predictive effects be-
tween observed variables. When the aim is to discover psy-
chological dynamics, the GGM can be used as a hypothesis
generating technique inspiring future research or therapy di-
rections (Epskamp, van Borkulo, et al., 2017; Kroeze et al.,
2017). For example, an effect found in a cross-sectional anal-
ysis could inspire a time-series study, a contemporaneous ef-
fect could inspire a shorter time-lag time-series study and
a between-subjects effect could inspire lengthy longitudinal
studies. All network structures may inspire experimental de-
sign, or to gather a mixture of observational and experimen-
tal data (Magliacane et al., 2017). The GGM thus provides
a powerful addition to the exploratory toolbox in behavioral
research.
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Supplementary 1: Notation

Throughout the paper we employ the following notation.
Roman letters indicate observed variables, and Greek letters
indicate parameters or latent variables. Nonboldface letters
indicate a single value. An uppercase nonboldface letter
indicates a random variable, and a lowercase nonboldface
letter indicates a realization. We use t to denote measure-
ment occasion and T to denote a random measurement occa-
sion,16 i (i ∈ {1, 2, . . . ,m}) to denote item administered, and
p (p ∈ {1, 2, . . . , n}) to denote a subject and P to denote a
random subject. We will use lowercase boldface letters to
denote column vectors and uppercase boldface vectors to de-
note matrices. Subscripts will denote if these are random or
fixed. For example, BBBp will denote a fixed matrix for subject
p, and BBBP will denote the matrix of random subject P (which
has a distribution).

Because we are interested in finding dynamics between
items, we use vector yyy to denote the set of all items.17 For the
observed variables, we will use consistent subscripts (mea-
surement, subject) to denote which items are contained in
the vector. For example, yyy[t,p] denotes all responses of sub-
ject p at time point t, and yyy[T,p] denotes all responses of
subject p at a random time point T . A set in this sub-
script indicates multiple responses. For example, we will use
yyy>[{t−1,t},p] =

[
yyy>[t−1,p] yyy>[t,p]

]
to denote a set of lagged and cur-

rent responses from subject p around time point t. If only one
observation or subject is measured, we will drop the square
brackets (e.g., yyyP = yyy[1,P] indicates the cross-sectional re-
sponse pattern of a random subject). When it is unclear if
the set of items corresponds to a random person or a ran-
dom measurement occasion, we refer to C as a random case,
with c as a particular case, and subset the data either as yyyC

to describe a random response pattern or yyyc to describe a
realization—in cross-sectional data yyyC = yyyP and in N = 1
time-series data yyyC = yyyT . C could also indicate a set of mul-
tiple responses. Other subscripts denote subsets of a vector
or matrix, with notation −(. . .) indicating the subset of every-
thing except {. . .}.

Supplementary 2: Two-step multi-level VAR

In this appendix, we will outline two-step multi-level
VAR, which we propose as a methodology to estimate the
GVAR model using multi-level estimation. This method
builds on the work of Bringmann et al. (2013), and extends
their proposed algorithm by including between-subject ef-
fects (Hamaker & Grasman, 2014) and estimating the con-
temporaneous network by performing a second multi-level
estimation on the residuals of the temporal model (the second
“step”). To reiterate the paper, the model to estimate is:

yyy[T,p] | yyy[T−1,p] = yyy[t−1,p] ∼ N
(
µµµp + BBBp

(
yyy[t−1,p] − µµµp

)
,ΘΘΘp

)
.

In particular, we are interested in estimating between-
subjects network KKK(ΩΩΩ) = ΩΩΩ−1 = Var(µµµP)−1 and the (distri-
butions of) temporal networks BBBp and contemporaneous net-
works KKK(ΘΘΘ)

p = ΘΘΘ−1
p .

Supplementary 2.1: Multi-level modeling

The fixed effects and random effect variances and covari-
ances can be estimated by estimating a VAR model for every
subject, pooling the parameter estimates, and computing the
mean (fixed effects) and variance–covariance matrix (random
effects distribution). This estimation, however, is separate
for every subject. To combine all observations in a single
model, we can assign distributions over the parameters; in
which case, we make use of multilevel modeling. Assigning
distributions has two main benefits. First, instead of having
a single parameter per subject, we now only need to estimate
the parameters of the distribution. For example, when we
model observations from 100 subjects, instead of estimating
each parameter 100 times, we now only need to estimate its
mean and variance. Second, the multilevel structure acts as
a prior distribution in Bayesian estimation procedures—in
case we wish to obtain person-specific parameter estimates
post hoc. In particular, multilevel modeling leads to shrink-
age; parameter values that are very different from the fixed
effects are likely to be estimated closer to the fixed effect in
multilevel modeling than when using a separate model for
every subject. For example, if we estimate a certain temporal
regression in five people and find the values 1.1, 0.9, 0.7,
1.3, and 10, it is likely that the fifth statistic, 10, is an outlier.
Ideally, we would estimate this value to be closer to the other
values.

Bringmann et al. (2013) proposed a sequential univariate
method for estimating temporal VAR models. Because the
joint conditional distribution of yyy[T,p] | yyy[T−1,p] = yyy[t−1,p] is
normal, it follows that the marginal distribution of every vari-
able is univariate normal and can be obtained by dropping all
other parameters from the distribution:

y[T,p,i] | yyy[T−1,p] = yyy[t−1,p] ∼ N
(
µ[p,i] + βββ[p,i]

(
yyy[t−1,p] − µµµp

)
, θ[p,i]

)
,

in which y[T,p,i] denotes the ith element of yyy[T,p], βββ[p,i] indi-
cates the row vector of the ith row of BBBp, and θ[p,i] denotes
the ith diagonal element of ΘΘΘp. When drawn as a temporal
network, the edges point to node i. Many software pack-
ages do not allow the estimation of µµµp as described above.
In this case, the sample means of every subject, ȳyyp, can be

16Mostly we assume measurements are nested in subjects, and
two subjects might have a different number of measurement occa-
sions. As such, t = 1 for subject p = 1 might not correspond to
t = 1 for subject p = 2.

17If researchers are interested in dyadic interactions (Ferrer,
2016), for example, then a dyadic pair can be seen as a “subject,”
and items can be the item responses from both subjects.
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taken as a substitute for µµµp (Hamaker & Grasman, 2014).
The model then becomes a univariate multilevel regression
model with within-subject centered predictors, estimable by
functions such as the lmer in lme4 (Bates, Mächler, Bolker,
& Walker, 2015). The Level 1 model becomes

y[t,p,i] = µ[p,i] + βββ[p,i]

(
yyy[t−1,p] − ȳyyp

)
+ ε[t,p,i]

ε[T,p,i] ∼ N(0, θ[p,i]), (7)

and the Level 2 model becomes[
µ[P,i]
βββ[P,i]

]
∼ N

([
0
βββ∗i

]
,

[
ωµi ωωω(βββiµi)>

ωωω(βββiµi) ΩΩΩ(βββi)

])
.

Estimation of such univariate models requires integrating
over a simpler integral than estimation of multivariate mod-
els. As a result, sequential estimation using univariate mod-
els have been used in estimating multilevel VAR models
(Bringmann et al., 2013). A downside, however, is that not
all parameters are included in the model. In particular, cor-
relations between means (between-subject effects) and be-
tween contemporaneous covariances are not retained, as well
as the correlations between temporal edges pointing to differ-
ent nodes. A second downside is that estimating correlated
random effects does not work well for models with many
predictors. In particular, lmer becomes very slow with ap-
proximately more than eight predictors. As such, networks
with more than eight nodes are hard to estimate. To estimate
larger networks (e.g., 20 nodes), we can choose to estimate
uncorrelated random effects, which we term orthogonal esti-
mation.

Supplementary 2.2: Extending multi-level VAR: two-step
multi-level VAR

The methodology of Bringmann et al. (2013) does not
estimate contemporaneous or between-subjects networks.
Therefore, we propose extensions to the algorithm to esti-
mate these networks. We propose a two-step method. Step
1 follows the procedure of (Bringmann et al., 2013) with the
addition that between-subject effects are included (Hamaker
& Grasman, 2014). This leads to estimates of the temporal
and between-subjects networks. The second step involves
taking the residuals of step 1 in order to obtain contempora-
neous networks.

Step 1: Temporal and between-subjects networks. To
obtain estimates of between-subject effects, the sample
means of every subject, ȳyyp in Equation (7), can be included
as predictors at the subject level (except for the mean of the
dependent variable; Hamaker & Grasman, 2014; Hoffman &
Stawski, 2009; Curran & Bauer, 2011). With this extension,
the Level 2 model for the person-specific mean of the ith
variable now becomes

µ[p,i] = βββ
(µ)
i ȳyy[p,−(i)] + ε

(µ)
[p,i], (8)

in which we use βββ
(µ)
i to denote the ith row (without the

diagonal element i) of an m × m matrix BBB(µ), and ȳyy[p,−(i)]
denotes the vector ȳyyp without the i-th element. Because
ȳ[p,i] is itself an estimate of µ[p,i], Equation (8) takes the
form of a multiple regression model. As such, these esti-
mates can be used to estimate a GGM between the means
(Lauritzen, 1996; Meinshausen & Bühlmann, 2006)—the
between-subjects network:

KKK(µµµ) ≈ DDD(µµµ)
(
III − BBB(µ)

)
,

with d(µ)
ii = 1/Var(ε(µ)

[P,i]). Due to the estimation in a multi-
level framework, the resulting matrix will not be perfectly
symmetric and must be made symmetric by averaging lower
and upper triangular elements. Thus, each edge (i.e., partial
correlation) in the between-subjects network is estimated by
standardizing and averaging two regression parameters: the
parameter denoting how well mean A predicts mean B and
the regression parameter denoting how well mean B predicts
mean A.

Step 2: Contemporaneous networks. An estimate for
contemporaneous networks can be obtained in a second step
by investigating the residuals of the multilevel model that
estimate the temporal and between-subject effects. These
residuals can be used to run multilevel models that predict the
residuals of one variable from the residuals of other variables
at the same time point. Let ε̂[t,p,i] denote the estimated resid-
ual of variable i at time point t of person p, and let ε̂εε[t,p,−(i)]
denote the vector of residuals of all other variables at this
time point. The Level 1 model then becomes

ε̂[t,p,i] = βββ(ΘΘΘ)
[p,i]ε̂εε[t,p,−(i)] + ε(ΘΘΘ)

[t,p,i], (9)

in which βββ(ΘΘΘ)
[p,i] represents the i-th row (without the diagonal

element i) of an m × m matrix, BBB(ΘΘΘ)
p , and ε(ΘΘΘ)

[t,p,i] represents a
residual. In the Level 2 model, we again assign a multivari-
ate normal distribution to parameters in βββ(ΘΘΘ)

i . It can be seen
that Equation (9) also takes the form of a multiple regression
model. Thus, this model can again be seen as the node-wise
GGM estimation procedure:

KKK(ΘΘΘ)
p ≈ DDD(ΘΘΘ)

p

(
III − BBB(ΘΘΘ)

p

)
,

with d(ΘΘΘ)
[p,i] = 1/Var(ε(ΘΘΘ)

[T,p,i]). Again the matrices need to be
made symmetric by averaging upper and lower triangle ele-
ments. Fixed effects can be obtained by using the fixed ef-
fects matrices instead in the expression above. As with the
temporal network, orthogonal estimation can be used when
the number of variables is large (i.e., larger than approxi-
mately eight).

Thresholding. After estimating network structures, re-
searchers may be interested in removing edges that may be
spurious and due to sampling error. By setting edge weights
to zero, effectively removing edges from a network, a sparse
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network is obtained that is more easily interpretable. One
method of doing so is by removing all edges that are not sig-
nificantly different from zero. For fixed effects, multilevel
software returns standard errors and p-values, allowing for
this thresholding. For the temporal networks, each edge is
represented by one parameter and thus by one p-value. The
contemporaneous and between-subjects networks, however,
are a function of two parameters that are standardized and
averaged: a regression parameter for the multiple regression
model of the first node and a regression parameter for the
multiple regression model of the second node. As such, for
every edge, two p-values are obtained. We can choose to re-
tain edges of which at least one of the two p-values is signif-
icant, termed the “or” rule, or we can choose to retain edges
in which both p-values are significant, termed the “and” rule
(Barber, Drton, & Others, 2015).

Summary. In sum, the above described two-step esti-
mation method proposes to estimate a multilevel model per
variable, using within-person centered lagged variables as
within-subject predictors and the sample means as between-
subject predictors. These models can be used to obtain es-
timates for the temporal network and between-subjects net-
work. In a second step, the contemporaneous networks can
be estimated by estimating a second multilevel on the resid-
uals of the first multilevel model. The mlVAR R package im-
plements these methods (Epskamp, Deserno, & Bringmann,
2017). In this package, temporal coefficients can be esti-
mated as being “unique” per subject (unique VAR models
per subject), “correlated” (estimating correlations between
temporal effects), “orthogonal” (assuming temporal effects
are not correlated), or “fixed” (no multilevel structure on
temporal effects). The contemporaneous effects can also be
estimated as being “fixed” (all residuals are used to obtain
one GGM), “correlated” (second step multilevel model with
correlated random effects), “orthogonal” (second step mul-
tilevel model with uncorrelated random effects), or “unique”
(residuals are used to obtain a GGM per subject). The mlVAR
package can also be used to plot the estimated networks, in
which significance thresholding is used by default with a sig-
nificance level of α = 0.05.

Supplementary 3: Simulation Studies

Supplementary 3.1: Simulation Study 1: Cross-sectional
Analysis and Repeated Measures

We performed a simulation study to investigate the inter-
pretability of GGMs obtained from cross-sectional data. We
constructed two network structures: a within-subjects net-
work and a between-subjects network. For the within-person
network, we constructed a chain graph (as shown in Fig-
ure S3, panel (b)) in which each edge-weight was set to 0.25
and made negative with 50% probability. For the between-
person network, we constructed the same structure but ran-
domly rewired all the edges, such that a random graph was

obtained (as shown in Figure S3, panel (c)). Next, the within-
person network was scaled such that the within-person vari-
ance of all nodes was 0.1, 0.2, 0.5, 1, 2, 5 or 10. The
between-subjects variance was set to 1. We estimated the
network structure using glasso in combination with EBIC
model selection (Foygel & Drton, 2010), as implemented
in the qgraph package (Epskamp et al., 2012; Epskamp &
Fried, 2017). We set the EBIC hyperparameter γ to 0.25.

Figure S1 shows the results, in which the estimated net-
work was compared to the true within and between subjects
networks as well as an unweighted network that contained an
edge whenever there was an edge in either true network. We
did not compute the correlation of edge weights with the un-
weighted graph as it contained no weights. The figure shows
that in large differences between within-person and between-
person variance the cross-sectional analysis converges to one
of the two networks. When the between-subjects variance
was relatively high the within-subjects network was not re-
trievable and vice versa. When the two variances were ap-
proximately equal, edges were detected that were in either
of the networks (high sensitivity in the combined graph) and
not many edges were detected that were not present in ei-
ther network (high specificity). This indicates that detected
edges in a cross-sectional network can be interpreted to likely
represent an edge in the within-subjects network or in the
between-subjects network. It should be noted that specificity
did go down with increased sample size, as the true network
does not necessarily contain zeros anymore. These false
edges were usually estimated to be very weak. Finally, these
results are based on a simulation study in which the within-
and between-subject networks completely differed from each
other. Preliminary results, such as the empirical samples in
this paper, seem to suggest this is not the case in empirical
data. We expect cross-sectional data analysis to perform bet-
ter when the two network structures align.

In order to start disentangling within- and between-
subjects variance, one needs an estimate of the person-
specific mean. The simplest way to obtain this is by averag-
ing two repeated measures. To this end, we repeated the sim-
ulation study above using the exact same setup, but now gen-
erated two independent responses per subject. Next, we cen-
tered the responses per subject to compute a within-subject
network and used the sample means per subject to com-
pute a between-subjects network. Figure S2 shows that the
within-subject network could now be well retrieved, while
the between-subject network could only be retrieved when
the between-subject variance was large. This seems to sug-
gest that now the estimated network structure can be more re-
liably interpreted to not be confounded by between-subjects
variance. Care should still be taken in interpreting such re-
sults, as, for instance, the analysis assumes both no auto-
regressions (these would greatly bias the estimated means per
subject) and no individual differences in network structure
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Figure S1. Simulations study showing the performance of cross-sectional analysis. Data were generated by summing scores
generated from two distinct distributions: a chain graph GGM (within-person) and a random graph GGM (between-person).
Left panels show performance compared to the between-subjects network and right panels show performance compared to the
within-subjects network. The center panels show performance compared to an unweighted graph that contained an edge if
there was an edge in the within-subjects network or the between-subjects network.

(which one can not expect to obtain with only two repeated
measures). We encourage future researchers to study cross-
sectional and repeated measures analysis in more detail by
performing more extensive simulation studies.

Supplementary 3.2: Simulation Study 2: Two-step Multi-
level VAR and Pooled and Aggregated LASSO Estima-
tion

In this section, we present simulations to assess the per-
formance of mlVAR and graphicalVAR in performing the
above-described methods for estimating network structures
on ESM data of multiple subjects. Simulation studies on
the described methods for cross-sectional and n = 1 stud-
ies are available elsewhere (Abegaz & Wit, 2013; Epskamp,
2016; Foygel & Drton, 2010). We simulated ESM data on 8
variables. First, we constructed a temporal, contemporane-
ous and between-subject network structure as shown in Fig-
ure S3, with 50% of non-diagonal parameters made negative.

Next, we parameterized the networks (temporal and contem-
poraneous networks were parameterized separately per sub-
ject). Temporal coefficients and partial contemporaneous or
between-subject correlations were drawn from a uniform dis-
tribution between 0.2 and 0.5 (or −0.5 and −0.2 for negative
edges). The contemporaneous networks and the between-
subjects networks were subsequently rescaled such that each
node had a residual variance of 0.25 and a between-subjects
variance of 1. Thus, for different subjects temporal and con-
temporaneous networks were equal in structure (which edge
was present and the sign of the edge) but not in weight. To
simulate subjects differing in network structure, we rewired
intra-individual networks with probability 0 (no differences)
or 1 (fully different within-person networks). Sample size
and number of observations per subject were varied between
50, 100 and 200, leading to a total of 2 (rewiring) ×3 (sam-
ple size) ×3 (number of observations per subject) conditions.
Each condition was replicated 100 times, leading to 18,00
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Figure S2. Simulations study showing the performance
of cross-sectional analysis. Data were generated by sum-
ming scores generated from two distinct distributions: a
chain graph GGM (within-person) and a random graph GGM
(between-person). Left panels show performance compared
to the between-subjects network and right panels show per-
formance compared to the within-subjects network. The cen-
ter panels show performance compared to an unweighted
graph that contained an edge if there was an edge in the
within-subjects network or in the between-subjects network.

total simulated datasets. We used both mlVAR (two-step
multi-level VAR) and graphicalVAR (pooled and aggregated
LASSO estimation) to estimate fixed and subject-specific
network structures. In mlVAR, orthogonal random effects in
combination with an “and”-rule were used to threshold sig-
nificant edges. In graphicalVAR, we tested 10×10 tuning pa-
rameters (temporal by between) and selected the set of tuning
parameters by minimizing the EBIC with γ = 0.25. To save
computing time, we only estimated one individual subject
network per replication in the graphicalVAR condition (fixed
effects were based on all subjects), and thus base the results
of individual network estimation performance in both meth-
ods on one network per replication. The true fixed effects
were set to the mean of all individual networks created.

In order to assess how well the estimated networks re-
semble the true networks, we computed for each dataset the
correlations between true and estimated fixed temporal, con-
temporaneous, and between-subjects networks and the cor-
relations between true and estimated subject specific tempo-

Temporal Contemporaneous Between−subjects

Figure S3. Example of simulated network models in the sim-
ulation study. Placing each node in a circle, the temporal net-
work contained positive auto-regressions on each node and
one cross-lagged regression on the node two positions to the
right, the contemporaneous network was simulated as a chain
graph, and the between-subjects network was simulated as a
random network with the same number of edges as the con-
temporaneous network (a different random network was gen-
erated for each dataset). Non-diagonal elements were made
negative with 50% probability.

ral and contemporaneous networks—because the between-
subjects network does not have random effects. In line with
other studies on assessing how well a method retrieves the
structure of a network (e.g., Epskamp, Rhemtulla, & Bors-
boom, 2017; van Borkulo et al., 2014), we again computed
the sensitivity (true positive rate) and the specificity (true neg-
ative rate).

Figure S4 shows the results of the simulation study in the
condition where edges were not rewired. It can be seen that
performance was generally good in both methods. Fixed ef-
fects of the temporal and contemporaneous networks were
well estimated (high correlations), most edges in the true net-
work were detected (high sensitivity), and few edges were
detected to be nonzero that were, in truth, zero (high speci-
ficity). The between-subjects network was better estimated
with more people. Using graphicalVAR for estimating indi-
vidual networks showed that at low sample-sizes, the method
lacked power to detect true edges (low sensitivity) but did not
estimate false edges (high specificity). No model selection is
performed in mlVAR on subject-specific networks, leading to
the specificity of 0 (all edges were always included in the net-
work). The between-subjects estimation using graphicalVAR
featured a moderate specificity, indicating some false edges
were detected. It should be noted that the simulations used
EBIC tuning parameter γ = 0.25, which errs more on the
side of discovery than the often used γ = 0.5 value (Foygel
& Drton, 2010). Figure S5 shows the results in the condi-
tion where edges were rewired, and shows here too a good
performance for both methods. mlVAR estimation performed
slightly poorer than when the structure was the same over all
subjects, and graphicalVAR performed identically (as can be
expected since no information of other subjects is used in the
estimation).
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Figure S4. Results of the simulation study using 8 nodes with the same network structure (but different parameters) for each
subject. True network structures were generated as shown in Figure S3. Boxplots indicate the distribution of the measures
over all the 100 simulated datasets per condition. The left panels relate to the fixed effect structures and the right panels relate
to subject specific network structures.
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Figure S5. Results of the simulation study using 8 nodes with the differing network structures for each subject. True network
structures were generated as shown in Figure S3, but temporal and contemporaneous edges were rewired with 50% probability
to other nodes at random. Only subject-specific networks are shown (as the fixed effect structure is ill-defined).
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Supplementary 4: Structural VAR and Graphical VAR
In this appendix we will show the equivalence between

structural VAR (SVAR) and graphical VAR (GVAR). This
equivalence is well known, as the only difference be-
tween GVAR and regular VAR is that the contemporane-
ous variance–covariance matrix is interpreted and modeled
as a GGM, the equivalence between regular VAR and SVAR
holds (e.g., Lütkepohl, 2005; Beltz & Molenaar, 2016; Mole-
naar & Lo, 2016). We supply the equivalence here because
inverting this contemporaneous variance–covariance matrix
simplifies the expression, and to keep the paper standalone
readable. First, we can derive an expression for precision
matrix KKK:

KKK = (III − ΓΓΓ)> KKK(ΘΘΘ) (III − ΓΓΓ)>

=

[
KKK11 − ΓΓΓ>21KKK12 − KKK12ΓΓΓ21 + ΓΓΓ>21KKK22ΓΓΓ21 KKK12(III − ΓΓΓ22) − ΓΓΓ>21KKK22(III − ΓΓΓ22)

(III − ΓΓΓ22)>KKK21 − (III − ΓΓΓ22)>KKK22ΓΓΓ21 (III − ΓΓΓ22)>KKK22(III − ΓΓΓ22)

]

We add superscript (S ) to denote a matrix following the
SVAR setup and (G) to denote a matrix following the GVAR
setup. Then, we obtain:
[
KKK(S )

11 + ΓΓΓ
(S )>
21 KKK(S )

22 ΓΓΓ
(S )
21 −ΓΓΓ

(S )>
21 KKK(S )

22 (III − ΓΓΓ
(S )
22 )

−(III − ΓΓΓ
(S )
22 )>KKK(S )

22 ΓΓΓ
(S )
21 (III − ΓΓΓ

(S )
22 )>KKK(S )

22 (III − ΓΓΓ
(S )
22 )

]
=

[
KKK(G)

11 + ΓΓΓ
(G)>
21 KKK(G)

22 ΓΓΓ
(G)
21 −ΓΓΓ

(G)>
21 KKK(G)

22
−KKK(G)

22 ΓΓΓ
(G)
21 KKK(G)

22

]
.

We can readily find:

(III − ΓΓΓ
(S )
22 )>KKK(S )

22 (III − ΓΓΓ
(S )
22 ) = KKK(G)

22 ,

in which KKK(S )
22 is diagonal. We can recognize this form from

equating a causal model to a GGM in the main article. Thus,
the contemporaneous GGM in GVAR is the GGM form of
the contemporaneous directed network used in SVAR: it has
an undirected edge whenever there is a directed edge or a
common effect in the SVAR model. Next, we can solve for
ΓΓΓ

(G)>
21 :

−(III − ΓΓΓ
(S )
22 )>KKK(S )

22 ΓΓΓ
(S )
21 = −KKK(G)

22 ΓΓΓ
(G)
21

(III − ΓΓΓ
(S )
22 )>KKK(S )

22 ΓΓΓ
(S )
21 = (III − ΓΓΓ

(S )
22 )>KKK(S )

22 (III − ΓΓΓ
(S )
22 )ΓΓΓ(G)

21

ΓΓΓ
(S )
21 = (III − ΓΓΓ

(S )
22 )ΓΓΓ(G)

21

(III − ΓΓΓ
(S )
22 )−1ΓΓΓ

(S )
21 = ΓΓΓ

(G)
21 .

Supplementary 5: Stationary distribution

The GVAR model implies the following expression for the
variance-covariance matrix of yyyt (dropping matrix indexing
subscripts for notational clarity):

Var (yyyT ) = Var (BBByyyT−1 + εεεT )

ΣΣΣ = BBBΣΣΣBBB> + ΘΘΘ,

in which we make use of the assumption of stationarity and
the assumption that residuals εεεT are uncorrelated with yyyT−1.
Now, we can make use of the vectorization operator Vec and
the Kronecker product ⊗ to obtain (Kim et al., 1999):

(III − BBB ⊗ BBB)−1 Vec (ΘΘΘ) = Vec (ΣΣΣ) ,

which gives an expression for the elements of ΣΣΣ in terms of
BBB and ΘΘΘ.
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Appendix A. Glossary of terms

Term Explanation

Undirected network A network model in which nodes are connected by edges (also termed links)
without arrowheads.

Directed network A network model in which nodes are connected by edges with arrowheads, as-
sumed to display causal effects or temporal prediction.

Gaussian graphical model An undirected network model in which observed variables are represented with
nodes. Nodes are connected with an edge if two variables are not independent
after conditioning on all other observed variables. Edges are parametrized by
using partial correlation coefficients.

Causal model A causal model of observed and unobserved variables that is assumed to gener-
ate the data.

Directed acyclic graph A directed network in which one node does not eventually point to itself.
Within-subjects network A network model explaining within-subject (co)variation from the stationary

mean.
Between-subjects network A network model explaining (co)variation between stationary means of different

persons.
Cross-sectional network A network model estimated on cross-sectional data. Can be shown to be a

blend of the within-subjects and between-subjects networks. Can be interpreted
as representative of within-subjects or between-subjects network based on the
way in which data is gathered.

Vector auto-regression (VAR) Multivariate regression of a set of variables on previous realizations of that set
of variables.

Temporal network A within-subject network model of effects between different measurement oc-
casions, showing temporal prediction or potential causal pathways.

Contemporaneous network A within-subject network model of effects between variables in the same mea-
surement occasion, after taking temporal effects into account. Can be directed
(SVAR) or undirected (GVAR), and is equal to a within-subjects network if
there are no temporal effects.
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