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Crying easily
RN - BE Subject Time ltem1 Iltem?2 Item 3
Subject 1  Time 1 2 2 4
s Subject 2 Time 1 4 1 2
N - BN Subject 3 Time 1 1 3 0

= Multiple people measured once: cross-sectional analysis
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Psychological Data

Cross-sectional

Conclusion

Subject Time Item1 Item2 Item 3
Subject 1 Time 1 2 2 4
Subject 1 Time 2 2 4 4
Subject 1  Time 3 1 4 3

= Multiple people measured once: cross-sectional analysis

= One person measured multiple times: N = 1 time-series
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Psychological Data

Subject Time Item1 Item2 Item 3

Subject 1  Time 1 2 2 4

Crying easily Subject 1 Time 2 2 4 4
0 1 E 3 4 Subject 1 Time 3 1 4 3
Subject 2 Time 1 4 1 2

i Subject 2 Time 2 3 1 2
ol - - Subject 2 Time 3 3 2 1
o Subject 3 Time 1 1 3 0
Subject 3 Time 2 4 0 1

S L A I Subject 3 Time 3 0 3 3

= Multiple people measured once: cross-sectional analysis

= One person measured multiple times: N = 1 time-series

= Multiple people measured multiple times: N > 1 time-series
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Cross-sectional Analysis

Agreeableness
© A1: Am indifferent to the feelings of others.
© A2: Inquire about others' well-being.
© A3: Know how to comfort others.
© Ad: Love children.
© AS: Make people feel at ease.

Conscientiousness

© Ci: Am exacting in my work.

© G2: Continue until everything is perfect.
© C3: Do things according to a plan.

© C4: Do things in a half-way manner.

© C5: Waste my time.

raversion
© E1:Don'talkalot.

@ E2: Find it diffcult to approach others.
© E3: Know how to captivate people.

© E4: Make friends easily.

© ES: Take charge.

Neuroticism
© Ni: Get angry easily.

© N2: Get initated easily.

© N3: Have frequent mood swings.
© Na: Often feel blue.

© Ns: Panic easily.

Openness
© O1: Am full of ideas.
© 02: Avoid difficult reading material.
© 03: Garry the conversation to a higher level.
© 04: Spend time reflecting on things.
© O5: Will not probe deeply into a subject.

= Concentration network: unique variance between two variables

Conclusion
0000000
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N =1 Time-series Analysis

(b) Temporal network — Patient 1 (a) Contemporaneous network — Patient 1
‘@

concentration

= Contemporaneous network: conditional concentration given t — 1

= Temporal network: regression coefficients between t — 1 and t
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N > 1 Time-series Analysis

Temporal

Contemporaneous Between-subjects

= Between-subjects network: concentration network between
stationary means

= Two-step multilevel VAR
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The Psychosystems Ecosystem

Cross-sectional
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Conclusion
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N = 1: Graphical VAR
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VAR SVAR / GIMME Cross-sectional

Graphical Vector Auto-regression (VAR)

Y: ’.Vt—l ~ N(B_thbe)

Variables assumed centered
B encodes the temporal network

= Temporal prediction

©7! encodes the contemporaneous network

= GGM

Graphical VAR model

Conclusion

= Wild, B., Eichler, M., Friederich, H. C., Hartmann, M., Zipfel, S., &

Herzog, W. (2010). A graphical vector autoregressive modelling

approach to the analysis of electronic diary data. BMC medical
research methodology, 10(1), 28.
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Temporal effects

relaxed  sad nervous concentration tired rumination  bodily.discomfort time
31 5 [ 4 5 ) 4 4 2014-05-01 10:15:00
32 3 5 4 5 6 4 5 2014-05-01 13:15:00
33 2014-05-01 16:15:00
34 3 5 4 5 6 4 4 J014-05-01 19:15:00
35 4 6@4—— T 7 5 4 2014-05-01 22:15:00
36 4 3 5 5 2 3 2014-05-02 10:15:00
37 4 3 4 5 5 3 2 2014-05-02 13:15:00

= The temporal network shows that one variable predicts another
variable in the next measurement occasion

= Granger causality

= Only temporal network from (graphical) VAR needed in
predicting new responses
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Contemporaneous effects

relaxed sad nervous concentration tired rumination = bodily.discomfort time
31 5 6 4 5 6 4 4 2014-05-01 10:15:00
32 3 5 4 5 6 4 5 2014-05-01 13:15:00
33 2014-05-01 16:15:00
3@ 5 4 5 ] k‘ 4 P014-05-01 19:15:00
35 4 6 4 4 7 5 4 2014-05-01 22:15:00
36 4 3 3 5 5 2 3 2014-05-02 10:15:00
37 4 3 4 5 5 3 2 2014-05-02 13:15:00

The contemporaneous network shows that two variables predict
one-another after taking temporal information into account
Contains effects faster than the time-window of measurement

= Somatic arousal — anticipation of panic attack — anxiety
The temporal network can be seen as a correction for
dependent measurements in estimating the GGM
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Temporal network Contemporaneous network




N = 1: Graphical VAR
00000008000

Estimation straightforward using multiple regression
For model selection, we use the graphical VAR model

= Wild et al. (2010). A graphical vector autoregressive modelling
approach to the analysis of electronic diary data. BMC Medical
Research Methodology 10 (1): 28.

Estimation via LASSO regularization, using EBIC to select
optimal tuning parameter

= Abegaz & Wit (2013). Sparse Time Series Chain Graphical
Models for Reconstructing Genetic Networks. Biostatistics:
kxt005.

= Rothman, Elizaveta, & Zhu (2010). Sparse Multivariate
Regression with Covariance Estimation. Journal of
Computational and Graphical Statistics 19 (4): 947-62.

We implemented these methods in the R package
graphicalVAR

Also implemented in sparseTSCGM
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Assumptions

= Stationarity

= Plausible when data is obtained in short time-span, less
plausible if data is obtained in longer time-span
= Stationary means

= Can be assessed by regressing each time-series on time itself as
predictor

= Detrending is possible: for example one can remove a linear
trend (see practical)

= Stationary network model(s)
= Jonas will talk about time-varying models this afternoon!
= Equidistant measurements
= With multiple measurments per day, by default violated due to
nights
= Remove nights, or model nights as missing observations
= Qisin Ryan will give a presentation on Friday on continuous
time modeling
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Personalized Network Modeling in Psychopathology: The
Importance of Contemporaneous and Temporal Connections

Sacha Epskamp', Claudia D. van Borkulo', Date C. van der Veen?,
Michelle N. Servaas?, Adela-Maria Isvoranu!, Harriétte Riese?,
Angelique O.J. Cramer!

1. University of Amsterdam, Department of Psychological Methods
2. University of Groningen, University Medical Center Groningen, Department of
Psychiatry, Interdisciplinary Center for Psychopathology and Emotion Regulation
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Personalized Networks in Clinical Practice

(a) Temporal network — Patient 1 (b) Contemporaneous network — Patient 1

bodily bodily
l l discomfort discomfort

= Contemporaneous network: conditional concentration given t — 1

= Temporal network: regression coefficients between t — 1 and t
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N > 1: Multi-level VAR
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Multi-level VAR

= Each subject is assumed to have their own temporal and
contemporaneous VAR model

= VAR parameters come from distribution

= Fixed effect
= Random effect

= Bringmann, L. F., Vissers, N., Wichers, M., Geschwind, N.,
Kuppens, P., Peeters, F., ... & Tuerlinckx, F. (2013). A

network approach to psychopathology: new insights into
clinical longitudinal data. PloS one, 8(4), ¢60188.
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Between-subjects

Within-subjects

Spelling
errors

Spelling
errors

Example based on Hamaker, E. L. (2012). Why Researchers Should
Think ‘Within-Person’: A Paradigmatic Rationale. Handbook of
Research Methods for Studying Daily Life. The Guilford Press New
York, NY, 43-61.
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Temporal Estimation

= Multi-variate multi-level MLE regression estimation is
complicated and not yet well implemented in open source
software

= 1lme4 packages implements univariate multi-level regression

= Douglas Bates, Martin Maechler, Ben Bolker, Steve Walker
(2015). Fitting Linear Mixed-Effects Models Using Ime4.
Journal of Statistical Software, 67(1), 1-48.
doi:10.18637/jss.v067.i01

= lmer function

= A multi-level VAR model can be estimated by sequentially
estimating univariate models
= Estimate all incoming edges per node
= Bringmann et al. (2013). A network approach to

psychopathology: new insights into clinical time-series data.
PloS one, 8(4), e60188.



Mplus 8 contains dynamic structural equation models

= statmodel.com/download/DSEM. pdf
Multi-level VAR is a special case

= statmodel.com/download/usersguide/Chapter9.pdf,

example 9.32

Contemporaneous and between-subject networks are not
obtained by default, can be computed from the Bayesian
samples (BPARAMETERS option)

Automated wrapper to come in m/VAR (implemented in devel
version)
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Empirical Example 1

Two datasets

= Original: 26 subjects, 51 measurements on average, 1323 total
observations

= Replication: 65 subjects, 35.5 measurements on average, 2309
total observations

16 indicators of neuroticism, extroversion, conscientiousness

Orthogonal estimation of temporal and contemporaneous
effects

Only significant effects shown

= Alpha = 0.05 and using the “or” rule
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Temporal Contemporaneous Between-subjects

Maximum: 0.2

Yl

Masimum: 05
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Individual Differences

Temporal Contemporaneous

Adventurous Adventurous

Outgoing

Maximum: 0.18 Maximum: 0.01
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Temporal 8 Contemporaneous
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@

@
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Neuroticism
Conscientiousness
Extraversion
Exercise

© ® 00

1 = "Worried”; 2 = “Organized”; 3 = “Ambitious”; 4 = “Depressed”; 5 =
“Outgoing”; 6 = "Self-Conscious”; 7 = “Self-Disciplined”; 8 = “Energetic”; 9 =
“Frustrated”; 10 = "Focused”; 11 = "Guilty"; 12 = “Adventurous”; 13 =
“Happy”; 14 = "Control”; 15 = "“Achieved”; 16 = “Angry"”; 17 = “Exercise.”
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Empirical Example 2

= Re-analysis of original Bringmann example

= Bringmann, L. F., Vissers, N., Wichers, M., Geschwind, N., Kuppens,
P., Peeters, F., Borsboom, D., & Tuerlinckx, F. (2013). A network
approach to psychopathology: new insights into clinical longitudinal
data. PloS one, 8(4), e60188.

= Geschwind, N., Peeters, F., Drukker, M., van Os, J., & Wichers, M.
(2011). Mindfulness training increases momentary positive emotions
and reward experience in adults vulnerable to depression: a
randomized controlled trial. Journal of consulting and clinical
psychology, 79(5), 618-628.

= Re-analysis using three software packages

= Two-step multi-level VAR (m/VAR)
= LASSO regularization (graphical VAR)
= Bayesian multivariate estimation (Mlus 8, generated by m/VAR)

* arxiv.org/abs/1609.04156
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Cross-sectional
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Conclusion
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Temporal

Contemporaneous

graphical VAR estimation

Between-subjects

relaxed
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Temporal Contemporaneous Between-subjects

Mplus estimation
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Limitations and Future Directions

= A lot of problems with VAR models
= Multivariate normality
= Stationarity
= Lag interval
= Model complexity (lag-2, day effects, etcetera)
= A lot of potential problems with multi-level estimation
= Multivariate estimation
= Modeling random contemporaneous effects
= Parameter variance-covariances
= Model selection
= Possibly move away from multi-level
= LASSO variants?
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The Limit of Observational Data

= Network structures are only hypothesis generating
= Highlighting potential causal pathways
= Observational data can never confirm causality

= Mixture of experimental and observational data needed

Conclusion
000@000

= We need to completely rethink the modeling framework to do

SO
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