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Abstract

Why has computational psychiatry yet to influence routine clinical practice?
One reason may be that it has neglected context and temporal dynamics in
the models of certain mental health problems. We develop three heuristics
for estimating whether time and context are important to a mental health
problem: Is it characterized by a core neurobiological mechanism? Does
it follow a straightforward natural trajectory? And is intentional mental
content peripheral to the problem? For many problems the answers are
no, suggesting that modeling time and context is critical. We review
computational psychiatry advances toward this end, including modeling
state variation, using domain-specific stimuli, and interpreting differences
in context. We discuss complementary network and complex systems
approaches. Novel methods and unification with adjacent fields may inspire
a new generation of computational psychiatry.

243

A
nn

u.
 R

ev
. P

sy
ch

ol
. 2

02
2.

73
:2

43
-2

70
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

B
ro

w
n 

U
ni

ve
rs

ity
 o

n 
01

/0
7/

22
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 

mailto:peter_hitchcock@brown.edu
mailto:michael_frank@brown.edu
mailto:eiko.fried@gmail.com
https://doi.org/10.1146/annurev-psych-021621-124910
https://www.annualreviews.org/doi/full/10.1146/annurev-psych-021621-124910


Contents

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
2. THREE HEURISTICS FOR ESTIMATING THE ESSENTIALITY

OF A MENTAL HEALTH PROBLEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
2.1. Neurobiological Mechanism Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
2.2. Variable Trajectory Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
2.3. Relevance of Intentional Content Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
2.4. Concluding Thoughts on Our Three Heuristics

for Estimating Essentiality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
3. NEW METHODS TO MODEL LOWER-ESSENTIALITY

PROBLEMS IN COMPUTATIONAL PSYCHIATRY. . . . . . . . . . . . . . . . . . . . . . . . . . 253
3.1. Refining Phenotypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
3.2. Capturing Domain-Specific and Time-Varying Phenomena

in the Real World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
3.3. Measuring Dynamics and Person-Specific Processes and Developing

Formal Mental Health Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

1. INTRODUCTION

Computational psychiatry is a burgeoning research field that applies methods, formalisms, and
theories from the computational cognitive neurosciences to mental health. The last decade has
seen an explosion of research in both theory-based (formal accounts of mental health) and data-
driven (predictivemodeling usingmany variables) approaches.Attesting to the field’s promise, sev-
eral studies have found that predictions of diagnostic categories or symptoms could be improved
by including latent parameters estimated through computational models fit to brain or behavioral
data (reviewed in Huys et al. 2021,Maia & Frank 2011,Wang & Krystal 2014). Here we focus on
emerging challenges as computational psychiatry matures (Browning et al. 2020,Williams 2016):
How can the field help us understand howmental health problems differ from one another?What
modeling strategies are needed for different kinds of problems? And what methods will be help-
ful for modeling temporal dynamics and the social and environmental contexts in which mental
health problems emerge?

The allure of computational psychiatry is that it is organized around theories such as rein-
forcement learning, dynamical systems, neural networks,Bayesian decisionmaking, and sequential
sampling. These theories span many fields, including mathematics, computer science, and com-
putational cognitive neuroscience. Thus, unlike many psychological theories with shallow roots
in basic science (Haslbeck et al. 2021), computational psychiatry theories build from deep ter-
rain, ranging from mathematical theories to biological sciences. Computational psychiatry offers
principled techniques to link processes across levels of analysis (see Eronen 2019). In particular,
it provides distinct vantage points on neurocomputational functions, from rational analysis of the
problem being solved to algorithmic details of specific solutions to plausible biological implemen-
tations (Huys et al. 2016, Maia & Frank 2011, Wang & Krystal 2014).

Despite its promise, computational psychiatry has yet had little influence on clinical practice
(Rutledge et al. 2019). A running joke in the field is that the number of reviews hyping the field’s
promise has outpaced its empirical results. With the benefit of retrospect, however, it was per-
haps unrealistic to predict dramatic and near-immediate progress on a topic as complex as men-
tal health. Early disappointment may have come from overoptimism rather than fundamental
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Neurocomputational
process:
an input-output
transformation and the
neural machinery that
effects it

limitations of the field. Computational psychiatry also has had difficulty recognizing how dif-
ferent mental health problems are from one another. As such, it may have been slow to adopt
sufficiently distinct modeling strategies for problems that drastically differ. We propose that, to
accelerate progress, the next generation of computational psychiatry research will need to incor-
porate modeling strategies suited to even the most complex problems (see also Gillan & Rutledge
2021, Moutoussis et al. 2017).

A key challenge in early computational psychiatry has been the field’s reliance on diagnostic
systems that are widely acknowledged to be flawed, such as the Diagnostic and Statistical Manual
of Mental Disorders (DSM-5; Am. Psychiatr. Assoc. 2013). Many phenotypes are poor—they lack
reliability and validity and are highly heterogeneous—and as such they permit limited conclusions
about mechanisms (i.e., “garbage in, garbage out”). Yet, much early computational psychiatry re-
search (including our own) recruited healthy controls and compared them to individuals with one
mental health disorder (or severity cutoff ) as conceived by the DSM. Diagnostic systems delin-
eate static and categorically distinct mental health problems, yet many problems are best thought
of as mixtures of dynamically interacting and dimensionally varying processes (Borsboom 2008,
Gillan et al. 2017, Kotov et al. 2017, Kozak & Cuthbert 2016, Nelson et al. 2017). Dimensional
and transdiagnostic approaches have thus been increasingly utilized in computational psychia-
try (Gillan & Seow 2020, Gillan et al. 2017, Gueguen et al. 2021, Wiecki et al. 2015). In psy-
chopathology research broadly intended, three prominent alternatives to sharp diagnostic delin-
eation have been recently developed. First, the Research Domain Criteria (RDoC) assumes that
mental health symptoms arise from mixtures of individual differences in cognitive and emotional
processes (Kozak & Cuthbert 2016). Second, the Hierarchical Taxonomy of Psychopathology
(HiTOP) uses factor analytic methods to investigate symptom co-occurrence patterns across a
broad, transdiagnostic space of mental health problems (Kotov et al. 2017). Third, the network
approach to psychopathology views mental health problems as dynamic systems of elements that
interact within and across diagnostic boundaries (Borsboom 2008, Fried & Cramer 2017).

Although these three approaches differ in many respects, they concur that it is unwise to at-
tempt to cleanly distinguish individuals with one mental health problem from individuals with
another mental health problem at a single point in time. This critique comes down to the perils of
essentialist thinking about mental health problems. Essentialist thinking focuses attention away
from the superficial features of a phenomenon and toward an internal mechanism or property
assumed to give rise to it (Gelman 2004). This is unproblematic if mental health problems are
indeed characterized by a “single, well-defined etiological agent” (Kendler et al. 2011, p. 1144)
that is both necessary and sufficient to distinguish individuals with and without the problem (as
if it were an infectious disease). If this were the case, grouping 500 patients diagnosed with ma-
jor depressive disorder (MDD) into the same category and investigating their biological markers
compared to those of a healthy control group would be a sound scientific method.However,many
mental health problems appear to be best understood as complex systems—i.e., interactions be-
tween neurocomputational processes and socioenvironmental contexts unfolding over time (Boyd
1991, Fried & Cramer 2017, Kendler et al. 2011). These may differ greatly among the 500 MDD
patients just described (Cai et al. 2020). The utility of essentialist thinking thus depends on the
nature of the problem (Brick et al. 2021, McNally 2021).

For simplicity, we will hereafter refer to disorders as varying along a spectrum of essentiality,
from high to low. Critically, this term is only meant as a shorthand for the utility of essentialist
thinking (i.e., the psychological process; Gelman 2004) about a problem. It is not a claim that
some or all mental health problems have essences, for instance. In Section 2, we suggest three
heuristics for estimating the essentiality of a mental health problem.We argue that many mental
health problems may have modest or fairly low essentiality. Essentialist thinking is not helpful
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Low

Tic disorders, Huntington’s disease, anti-NMDAR encephalitis, Parkinson’s disease

Autism spectrum disorder, schizophrenia, anorexia nervosa, attention-deficit/hyperactivity disorder,
dog phobia, bipolar disorder, obsessive compulsive disorder

Post-traumatic stress disorder, major depressive disorder, generalized anxiety disorder,
oppositional defiant disorder, alcohol use disorder

High

Medium

Figure 1

Estimates of whether several well-known mental health problems have high, medium, or low essentiality.
Abbreviation: NMDAR,N-methyl-d-aspartate receptor.

for such problems because interdependent, temporally extended interactions partly constitute
them (McNally 2021), and essentialist thinking obfuscates the importance of these interactions.
In Section 3 we review developments in computational psychiatry and adjacent fields that move
us toward capturing the dynamic interactions of even medium- and low-essentiality problems by
modeling time and context. Note that throughout we focus on examples rather than offering a
comprehensive review due to citation limitations.

2. THREE HEURISTICS FOR ESTIMATING THE ESSENTIALITY
OF A MENTAL HEALTH PROBLEM

This section develops three heuristics for estimating the essentiality of mental health problems.
Figure 1 shows estimates of essentiality for some well-known mental disorders. Note that an
estimate is just an estimate; it is subject to change as more is learned. Moreover, each heuristic
alone provides only limited information about a disorder’s essentiality; the heuristics should be
combined to triangulate on an estimate. Figure 2 depicts the three heuristics.

A challenge in estimating essentiality is that poor phenotyping can make a problem appear to
have lower essentiality than it truly does (e.g., due to lack of understanding or misclassification).
A well-established aim of computational psychiatry, closely aligned with initiatives such as the
RDoC, is to improve phenotypic precision (Redish & Gordon 2016). Computational psychiatry

Core neurobiological
mechanism

Relevance of intentional
content

High
essentiality

Low
essentiality Time

Varying
trajectory

b ca

Figure 2

Visualization of three heuristics for estimating essentiality. (a) High-essentiality problems comprise a set of
signs and symptoms that arise from a core neurobiological mechanism, whereas low-essentiality problems
are best thought of as a set of elements in varied relational patterns with one another (denoted by arrows of
different widths and directions). These elements constitute low-essentiality problems. (b) High-essentiality
problems follow a relatively linear naturalistic (i.e., absent intervention) course, whereas lower-essentiality
problems follow variable trajectories. (c) Intentional mental content (e.g., negative schemata; blue bubble) is
central to low-essentiality problems (e.g., major depression; white plane). Such content may be present in
high-essentiality problems (e.g., Parkinson’s disease), but it is not key to understanding such problems.
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offers powerful tools to build bridges between phenotypes defined by the current diagnostic
systems and an emerging neurocomputational ontology (Poldrack & Yarkoni 2016). Ultimately,
this may allow the current system of symptom-level descriptions to be partly reformulated as
mixtures of neurocomputational processes (e.g., Drysdale et al. 2017) that have been refined
through a combination of measurement innovation and theory (e.g., by employing computational
modeling strategies and process-pure tasks that can reveal the differences underlying superficially
similar symptoms and behaviors).

Yet, even if we could perfectly phenotype problems at any one point in time, we argue that
there would still be a spectrum of essentiality. This is because the variability that we see among
mental health problems is not due only to variability in how well we currently understand them
(i.e., in our current knowledge of the underlying processes and our way of clustering these pro-
cesses). The problems themselves can also have what we call meaningful heterogeneity. This is
heterogeneity that arises due to the interdependence of the elements that constitute the problem,
which makes it difficult to classify them at any one point in time and out of context (Lydon-Staley
et al. 2021, Nelson et al. 2017). The three heuristics described in this section are meant to illus-
trate the indicators and practical consequences of meaningful heterogeneity through a series of
examples.

In particular, we consider Parkinson’s disease, schizophrenia, andMDD as running examples of
high-, moderate-, and low-essentiality disorders, respectively. To situate this discussion, we draw
on the neurocomputational functions of corticostriatal circuitry and dopamine (DA) in decision
making, motivation, and reinforcement learning and on how dysfunctions or alterations in this
circuitry relate to mental health (Maia & Frank 2011).We introduce each section with one or two
questions to frame the discussion.

2.1. Neurobiological Mechanism Heuristic

Does a single,well-specified neurobiological mechanism cause themental health problem?Would
repairing it resolve the problem?

High-essentiality problems are caused by impairment of a specific, core neurobiological mech-
anism, beginning in a well-defined temporal window and leading to the disorder’s primary signs
and symptoms. Note that a single neurobiological mechanism can lead to more than one neu-
rocomputational dysfunction (see Section 2.1.1 and the sidebar titled What Does Dysfunction
Mean in a Mental Health Context?). The paradigmatic example of a clear biological etiology and

WHAT DOES DYSFUNCTION MEAN IN A MENTAL HEALTH CONTEXT?

How to define dysfunction within a mental health context has been the subject of intense debate (e.g., McNally
2001, Wakefield 1992b). We favor a definition proposed by McNally (2011) that casts dysfunction as a disrupted
process operating within a larger causal system. For instance, the heart malfunctions within the context of the
circulatory system if it fails to pump blood; the amygdala malfunctions within the threat-detection system if it fails
to respond to proximal threat or responds excessively to neutral stimuli (McNally 2011). This definition rests on
a notion of normal function versus aberrant functioning. Wachbroit (1994) argued that a concept of normality is
indispensable within biology. Normal function, according to this account, is not the same as statistically normal
(i.e., average or prototypical function). For instance, a radioactive accident could render the hearts of everyone
on earth dysfunctional; in this case, statistical deviation would not help to reveal dysfunction (Wakefield 1992a).
Rather, normal function by this account refers to an idealized operation of the function against which deviations
can be gauged (Wachbroit 1994).
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resulting neurobiological impairment is general paresis of the insane, today known as late-stage
syphilis. In the early twentieth century, this disorder was famously discovered to be caused by the
spiral-shaped bacterium Treponema pallidum, which produces frontotemporal atrophy. This raised
the prospect that simple etiologies would soon be found to underlie many mental health prob-
lems (Kendler 2005). More than a century later, however, this appears quite unlikely; as Kendler
(2005, p. 433) has noted, “we can expect no more ‘spirochete-like’ discoveries.” Although most
mental health problems are more etiologically complex than general paresis of the insane, there
still appears to be substantial variation in the extent to which they are characterized by a core
neurobiological mechanism.

2.1.1. Parkinson’s disease. Parkinson’s disease is a relatively high-essentiality disorder that in-
volves the progressive denervation of DA neurons of the substantia nigra, preferentially targeting
dorsal striatum of the basal ganglia (BG) early in the disease (Cools et al. 2001). In computational
models, a healthy dynamic striatal DA range is required for adaptive action selection and rein-
forcement learning. Chronic DA depletion in Parkinson’s disease leads to a bias toward learning
more from negative than from positive reward prediction errors (RPEs; Wiecki & Frank 2010).
DA medications reverse these biases by restricting DA levels to an artificially high range, pre-
venting the DA “dips” that normally accompany negative RPEs, as captured by computational
modeling (Frank 2005). Confirming model predictions, relative to healthy controls, unmedicated
Parkinson’s disease patients showed impaired learning from positive RPEs but relatively enhanced
learning from negative RPEs; medications reversed this bias, impairing learning from negative
RPEs (Frank et al. 2004). This pattern may explain some of the adverse effects of DA medica-
tions, such as impulsivity, and has been replicated at least 15 times (some of which are reviewed in
Collins & Frank 2014).

Other Parkinson’s disease sequelae arise as a consequence of this core pathology. This pattern
is common to many high-essentiality problems: A core neurobiological mechanism can lead to
multiple neurocomputational dysfunctions. In Parkinson’s disease, dopamine depletion affects not
only themotor striatal circuits but also those interacting with the prefrontal cortex (PFC).Accord-
ingly, in the computational models, this mechanism alters gating not only of motor actions but also
of cognitive ones, such as the entrance of cortical content into working memory. Empirical work
confirms that there are parallels in howmotor actions and workingmemory content are gated, and
that these are related to striatal DA mechanisms in Parkinson’s disease (Salmi et al. 2020, Wiecki
& Frank 2010). Within a given corticostriatal circuit, DA depletion also induces hyperactivity of
the subthalamic nucleus (STN). According to the computational model, this hyperactivity leads
to elevated decision thresholds for initiating actions, which is separate from the effect of DA on
weighting costs versus benefits (Frank et al. 2007). Indeed, deep brain stimulation of the STN re-
duces the decision threshold and partially remediates motor deficits, but it can accordingly lead to
a distinct sort of impulsivity, preventing patients from adaptively elevating the decision threshold
when needed for cognitive control (Cavanagh et al. 2011,Frank et al. 2015,Herz et al. 2016).Thus,
the same computational model ties together several cognitive, motivational, and motor sequelae
of Parkinson’s disease resulting from a core neurobiological mechanism: DA denervation in the
BG.The model therefore suggests how varying rates of dysfunction in these pathways can help to
explain Parkinson’s disease subtypes, such as those where gait freezing predominates (Matar et al.
2019).

2.1.2. Schizophrenia. Schizophrenia is a middle-essentiality problem in which DA has long
been implicated (McCutcheon et al. 2020). Indeed, many of the disorder’s positive symptoms can
be accounted for by spontaneous striatal DA fluctuations that assign meaning to irrelevant events
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(defined as aberrant salience; Kapur 2003), and many negative symptoms can be explained by
weaker adaptive DA responding to motivationally significant events (Gold et al. 2015, Maia &
Frank 2017). Yet, it is clear that dysregulated striatal signals alone are an insufficient account of
schizophrenia; much evidence also implicates PFC dysfunction that leads to context-inappropriate
behavior (Cohen & Servan-Schreiber 1992). In a formal model of the complementary contribu-
tions of BG and PFC, an extended neural network includes PFC layers that maintain stimulus-
outcome associations in working memory “attractor states”; these afford specific representations
about the expected values of stimuli and actions as well as rapid adjustment to recent outcomes
(Frank & Claus 2006). Experiments disentangling these contributions with quantitative modeling
revealed that schizophrenia patients mostly struggled with PFC-like computations (e.g., reduced
contributions of working memory and expected value, reduced top-down biasing of learning),
with relatively spared incremental reinforcement learning from RPEs (e.g., Collins et al. 2017,
Geana et al. 2021, Gold et al. 2012). This conclusion is also supported by neuroimaging (Dowd
et al. 2016) and is consistent with other dynamical systems models of deficient attractor states in
schizophrenia (e.g., Durstewitz & Seamans 2008).

2.1.3. Depression. MDD is a relatively low-essentiality problem in which a wide range of neu-
rocomputational differences have been noted, including alterations in reward processing and cog-
nitive control tasks, experience of more negative emotions, and proneness to self-referential, ru-
minative thinking (Goldstein & Klein 2014, Kaiser et al. 2015, Keren et al. 2018, Snyder 2013).
Yet, in contrast to Parkinson’s disease, where there is a focal pathological aberration of midbrain
DA neurons, the processes implicated in MDD develop over a long time and in close interaction
with one another. Depression also constitutes a heterogeneous phenotype (Fried & Nesse 2015):
Differences documented at the group level are not reliably present among individual patients (e.g.,
Webb et al. 2016).

Critically, it is unclear which observed alterations in MDD should be thought of as dysfunc-
tional (as opposed to adaptive) in light of other alterations and of social and environmental factors.
For example, rumination has been consistently associated with depression (reviewed in Nolen-
Hoeksema et al. 2008). Neuroimaging studies confirm altered activity patterns in depression in
many areas implicated in self-referential processing and attentional control (Kaiser et al. 2015).
These patterns are sometimes interpreted as aberrant, yet it is unclear what distinguishes maladap-
tive from adaptive repetitive thinking about oneself (but see Watkins 2008 for one delineation).
Intuitively, intense and protracted thinking can be important after a serious setback to one’s life
plans. Stressful life events tend to precipitate MDD (Kendler et al. 2000); hence, it is unclear
where to mark the boundary between dysfunctional thinking (Dayan & Huys 2008) and con-
structive thinking that helps to resolve problems, facilitate recovery, and elicit support (Andrews
& Thomson 2009). Similarly, depressed individuals on average show performance decrements in
cognitive control–demanding tasks (Snyder 2013). Yet, operating from a computational perspec-
tive on cognitive control allocation, Grahek and colleagues (2019) have emphasized that merely
observing a difference in a control-demanding task is uninformative about whether the differ-
ence emanates from dysfunction per se or from learned control-allocation decisions. For example,
control may be allocated to self-directed mentation if such thinking is valued (see also Agrawal
et al. 2020, Andrews & Thomson 2009), and decreased control could be rationally learned from
action-outcome statistics (Lieder et al. 2013, Shenhav et al. 2013). To the experimenter’s eye, these
learned differences—products of a properly functioning control system—would (typically) lead to
a performance pattern indistinguishable from cognitive control dysfunction (Grahek et al. 2019).

In sum, research points to a relatively specific core dysfunction in Parkinson’s disease, whereas
schizophrenia arises from a more complicated interaction between striatal and PFC dysfunction
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and other interrelated neurocomputational processes (reviewed in Valton et al. 2017). MDD in-
volves an even more complicated set of alterations, many of which are difficult to interpret out of
context (e.g., whether the alteration helps or harms in coping with recent life stress).

2.2. Variable Trajectory Heuristic

Would the problem manifest in the same way irrespective of neurocomputational and social and
environmental context?

High-essentiality problems follow a stereotyped natural course (absent intervention), whereas
low-essentiality problems involve the contingent interactions of neurocomputational and social
and environmental processes over time. This makes it difficult to predict the specific trajectory of
such problems (Henry et al. 2020). This heuristic thus concerns a continuum along which prob-
lems fall: from following an ordered and linear progression to comprising interacting elements
that lead to ramifying trajectories over time.

At the heart of this heuristic is the degree of multifinality—that is, the extent to which the same
predisposing constellation of factors leads to divergent outcomes (Cicchetti & Rogosch 1996). For
instance, a bias to attend to negative information has been implicated as a risk factor for various
internalizing disorders, yet it is unclear why one individual develops obsessive-compulsive disor-
der whereas another develops MDD. One reason multifinal problems are challenging to model is
that the causes of mental unhealth appear at different causal distances from the acute onset of the
problem. Heuristically, these can be classified into distal versus proximal factors (i.e., things that
happen to people, such as having certain genes or having experienced child abuse, versus things
that vary over time within individuals, such as one’s current propensity to ruminate or tolerance for
ambiguity) and moderators that determine exactly how a problem unfolds (e.g., a problematic be-
havior crystallizing into a strong habit; Nolen-Hoeksema & Watkins 2011). In lower-essentiality
problems, the dynamic interrelations between these elements,which are operative at different time
scales, partly constitute the problem itself (McNally 2021). For instance, in MDD, processes such
as negative schemas, rumination, cognitive control differences, interpersonal stress, and a conflict-
laden work environment can mutually reinforce each other (Fried & Cramer 2017, Kendler et al.
2011).

In contrast, for higher-essentiality problems, there is a more direct path from distal risk factors
to core neurobiological mechanism, concomitant dysfunction(s), and resulting symptoms. For in-
stance, in contrast to many mental health problems, single-gene mutations confer strong risk for
Parkinson’s disease (though note that various genes leading to somewhat different etiologies are
implicated, hence Parkinson’s diseasemay be further subtyped eventually;Weiner 2008).The hall-
mark of Parkinson’s disease is denervation of DA neurons, leading to well-characterized problems
that follow a fairly ordered progression over time. It is important to note that even this rela-
tively high-essentiality disorder is dependent on the social milieu and environment. This follows
from the aforementioned findings that DA denervation in Parkinson’s disease leads to exaggerated
learning from negative outcomes (in the unmedicated state; Frank 2005). In addition to having
direct detrimental effects onmotor performance, this denervation can induce progressive aberrant
learning that amplifies symptom progression in a context-dependent fashion (Beeler et al. 2012).
It is noteworthy that some degree of social and environmental dependence is present even toward
the farthest end of the essentiality spectrum, such as in Huntington’s disease, which has a single
genetic cause but for which it is nonetheless unclear when symptoms will manifest (Wiecki et al.
2016).

In schizophrenia, there appears to be a more temporally extended and interactive pathway
to disorder development. Schizophrenia involves distal risk factors, including a complex suite of
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genetic risk factors that are thought to be at least partly responsible for cognitive impairments
that become evident over childhood and adolescence (McCutcheon et al. 2020). Stress caused by
difficulties in functioning due to these impairments, and compounding factors such as childhood
abuse, familial stress, and social marginalization (Egerton et al. 2016), are thought to alter the
function of the striatal DA system by adulthood (McCutcheon et al. 2020). As noted, altered
striatal DA signaling may serve to imbue irrelevant events with salience (via spontaneous firing)
and to prevent appropriate responding to relevant events (via lower adaptive firing; Maia & Frank
2017). Disorganized and inappropriate responding resulting from these dysfunctions may in
turn promote social ostracism and fuel the development of idiosyncratic beliefs, such as negative
views about oneself and one’s abilities, leading to emotional symptoms and further functional
impairment (Perivoliotis et al. 2009).

MDD (and other internalizing disorders with which it is highly comorbid) appear to show an
intricate interdependency with the social and environmental context and to be highly dependent
on the formation of specific beliefs. Strikingly, the genetic correlation between MDD and gen-
eralized anxiety disorder (GAD) has been estimated at 1 in women (and 0.74 in men), implying
that nongenetic (e.g., socioenvironmental) factors play a crucial role in determining the unique
symptoms of these problems (Kendler et al. 2007). Indeed, there appears to be some specificity in
the relationship between life stress experienced and resulting symptoms, with humiliating events
showing a stronger relationship withMDD and danger showing a stronger relationship withGAD
(although loss is comparably associated with both and with mixed presentations; Kendler et al.
2003).

Hammen (2005) has emphasized that stressful life events include not only independent stres-
sors (e.g., losing one’s spouse) but also dependent stressors (events in which individuals play a role,
e.g., fighting with one’s spouse). This suggests a transaction between depression risk factors and
stress-generating behavior in challenging situations. For instance, rumination and worry among
individuals prone to MDD and GAD may disrupt reinforcement learning about external con-
tingencies (Hitchcock et al. 2021, Whitmer et al. 2012). Because rumination involves accessing
negative memories within a negative affective context, it may also make negative memories more
accessible in the future (e.g., Cohen & Kahana 2020, Van Vugt et al. 2012). Hence, rumination
may simultaneously increase the future availability of negative thoughts and decrease the chance
of adaptively behaving in similar (external) situations in the future (see Hitchcock et al. 2021 for
discussion). Depending on what outcomes this leads to, different symptoms could result. For in-
stance, an individual who experiences substantial humiliation may develop depression symptoms,
whereas someone who finds themselves in ensnaring or dangerous situations could develop gen-
eral anxiety symptoms (Kendler et al. 2003). This latter possibility may be especially likely if the
individual becomes pessimistic about their ability to act safely in general (Zorowitz et al. 2020).
Longitudinal investigation confirms that there is a complex interplay between the tendency to ru-
minate, impaired performance in control-demanding activities, dependent stress generation, and
subsequent depression and anxiety symptoms (Snyder &Hankin 2016). As we discuss in Section 3,
we think these complex interactions imply that time and context must be more fully incorporated
into computational psychiatry models if we are to predict and model precisely problems such as
MDD and GAD.

2.3. Relevance of Intentional Content Heuristic

Is mental content about something (such as beliefs and values) critical to the problem? Is inter-
vening on such content an important lever to intervene on in the problem?

Mental health problems vary in the importance of intentional content: content that is about
something, such as a belief about oneself, the significance attributed to a personally meaningful
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event, or a value about how one ought to live. This heuristic thus concerns the extent to which
such content is central or peripheral to amental health problem.For example, consider Parkinson’s
disease andMDD.A Parkinson’s disease patient will experience substantial functional and occupa-
tional impairment as the disorder progresses, which may lead to negative views about themselves.
Changing these beliefs may assist in this person’s ability to cope, but it will not fix the root problem:
midbrain DA denervation. In contrast, negative views about oneself are arguably core to MDD;
they partly constitute the problem (Kendler et al. 2011). Evidence-based psychotherapeutic inter-
ventions specifically target such negative schemata and can lead to considerable improvement.

As another example, consider a soldier who unintentionally killed a civilian in combat (see Litz
et al. 2009). Trauma-informed guilt reduction (TrIGR) psychotherapy guides clients who have
incurred guilt from these kinds of experiences to reinstate the event’s complete context: distin-
guishing the knowledge they had at the time from that which they accrued later; recalling which
actions were actually available then (rather than which actions they wish had been available); and
identifying their specific responsibility (which typically reveals that their actions were embedded
in a complex causal chain). Elaborating the context of such an experience with a psychotherapist
may not bring full relief, but it can help to move a client from seeing themselves as deserving of
unrelenting and lifelong shame toward living consistently with their values now (Norman et al.
2014).

An individual who has experienced an event or set of events that challenged their values and
moral sense (sometimes referred to as moral injury) may report mental health symptoms (e.g.,
low mood, lost motivation, shame and guilt; Litz et al. 2009). Finding the best lever (Redish &
Gordon 2016, p. 19) for intervening on these symptoms would probably require understanding
the injurious memory and the beliefs that have developed around it; this would seem especially
plausible if dialogue (via TrIGR, for example) improved the person’s symptoms. Of note, such an
intervention undoubtedly would change memory and judgment engrams distributed through the
person’s brain (and, eventually, larger-scale neural circuits). Yet, there is no reason to think that
the specific details of the neural instantiation of these engrams would be especially interesting.
A more useful level of analysis for understanding this person’s difficulties is at the level of their
specific memories, judgments, and beliefs (Eronen 2019, Kendler 2005). By analogy, if I want to
convince someone that I have a blue bandanna in my closet, I will almost assuredly have more
success if I tell them as much directly rather than if I try to manipulate their brain. Similarly, when
the causal loci of a mental health problem involve specific intentional mental content, intervening
on such content (Eronen 2020b) may be the most direct route to effecting change.

A perhaps underappreciated point in computational psychiatry is that computational theories
can inform clinical principles relevant to intervening on intentional content. For instance, inverse-
planning models formalize theory-of-mind inferences about an agent’s goals and objectives from
their actions in situations (Baker et al. 2017); potentially, such models could elucidate how one
draws inferences about one’s own actions (see Gillan et al. 2017 for a similar proposal). Under-
standing the computational costs of different action-selection strategies can help to explain how
factors such as time pressure and proximity to threat mandate the use of fundamentally different
ways of responding (Mobbs et al. 2020). This could help to explain why, when they are under
pressure, people act in ways that are fundamentally different from the values they espouse when
they have more time to reflect. The computational expense of certain ways of thinking might also
help us understand why we tend to save (amortize) costly computations for later reuse (Dasgupta
& Gershman 2021), possibly including inferences about our own character made under or in the
wake of duress. In fact, this may even help to explain why we tend not to recompute past infer-
ences unless we have a strong motivation to do so—indeed, why we may not do so even if we have
since acquired relevant new information (an observation that has puzzled many a psychotherapist

252 Hitchcock • Fried • Frank

A
nn

u.
 R

ev
. P

sy
ch

ol
. 2

02
2.

73
:2

43
-2

70
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

B
ro

w
n 

U
ni

ve
rs

ity
 o

n 
01

/0
7/

22
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



who has observed their client express flatly contradictory beliefs that were formed in different
contexts).

Of note, moral injury provides a particularly clear example of the relevance of intentional con-
tent in mental health, yet beliefs, self-judgments, perceived violations of values, and other types of
intentional content are core to many mental health problems (see also Gu et al. 2019). That inten-
tional content is especially important in lower-essentiality problems follows from the two previous
heuristics. Lower-essentiality problems do not involve a coremechanism that leads to generic neu-
rocomputational deficits, but rather they comprise individual differences transacting with social
and environmental contexts over time. Such contexts, rather than dysfunctions or neurocompu-
tational propensities alone, partly determine which mental health elements will arise based on the
conclusions that people draw (i.e., the intentional content that emerges) in such situations.

2.4. Concluding Thoughts on Our Three Heuristics
for Estimating Essentiality

Weoffered three complementary heuristics for estimating the essentiality of a mental health prob-
lem: whether a single and specific neurobiological mechanism is core to the problem; whether
the problem follows a straightforward natural course or is characterized by divergent trajectories
(multifinality); and whether intentional mental content (beliefs, values, etc.) are core or peripheral
to the problem. Note that although we used diagnostic categories in our running examples for
familiarity, essentiality could be estimated for more granular representations (e.g., endopheno-
types), subsuming representations (e.g., higher-order factors; Kotov et al. 2017), or multidimen-
sional profiles (Wiecki et al. 2015) or “biotypes” (Drysdale et al. 2017) if these are consistently
replicated and refined in a way that enables categorization. For this reason, we refer throughout
to “mental health problems” for simplicity and generalizability.

3. NEW METHODS TO MODEL LOWER-ESSENTIALITY
PROBLEMS IN COMPUTATIONAL PSYCHIATRY

An important challenge to estimating essentiality is the possibility that a disorder may only ap-
pear to have low essentiality due to poor phenotyping (i.e., improper clustering and superficial
understanding), and that perhaps it would be possible to derive a higher-essentiality disorder (or
disorders) through improved phenotyping. Enhancing phenotypic precision is critical to contin-
ued progress in computational psychiatry, and in the current context it is key to avoiding con-
founds in estimating essentiality. Section 3.1 reviews efforts to improve phenotypic precision in
computational psychiatry (Figure 3).

However, even if we reached perfect phenotyping, there would still likely be a spectrum of
essentiality, because many mental health problems are characterized by meaningful heterogene-
ity: that is, heterogeneity that arises from the interdependency of the elements constituting the
problem, which confounds attempts to categorize the problem at any single point in time and
without an understanding of the context in which it arose. Sections 3.2 and 3.3 focus on modeling
dynamics unfolding in context over time to tame meaningful heterogeneity (Figure 4).

3.1. Refining Phenotypes

A key step toward more precise phenotyping is discovering (possibly high-dimensional) clusters of
neurocomputational alterations. There are a few strategies for discovering such clusters (see also
Maia & Frank 2011): top-down (from the diagnostic systems to neurocomputational processes),
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Top-down

Intermediate
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DSM
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Figure 3

Approaches to improving phenotypic precision. (a) Top-down approaches begin with symptoms or symptom
clusters (white circles) and relate these to processes inferred via computational psychiatry methods (such as
differences in learning rate, represented by an α parameter). (b) Intermediate approaches also typically use
symptoms encoded in the diagnostic systems, but they use dimension-reduction techniques to derive
summaries of which symptoms share variance (represented by the orthogonal planes) and then relate these
summaries to inferred processes. (c) The bottom-up approach begins with a process well characterized by
computational psychiatry methods, such as a mechanism represented by a parameter that can be
distinguished from others and that often has a clear function and link to neurobiology. It then attempts to
relate differences in this process to clinical phenomena, such as symptoms or diagnostic categories.
Abbreviation: DSM,Diagnostic and Statistical Manual of Mental Disorders.

bottom-up (working from well-defined neurocomputational processes to mental health phenom-
ena), and intermediate (e.g., using data-driven approaches to summarize questionnaire-based data
from the diagnostic systems and then relating these summaries to neurocomputational processes).

3.1.1. Top-down approaches. A number of computational psychiatry studies have taken steps
to move beyond diagnostic categories. One strategy is to report differential relationships between
neurocomputational processes and specific symptoms.Beevers and colleagues (2019) reported that
estimated drift rate (a rate parameter in computational models that assume information is sequen-
tially sampled over time) for negative words in the self-referential encoding task strongly related to
depression symptoms such as sadness and self-dislike, yet it only weakly related to symptoms such
as feeling like a failure, crying, and lost appetite. A symptom-centric approach may be particularly
valuable for poorly phenotyped problems such as MDD (i.e., those with very different risk factors,
neurobiological correlates, relationships to functional impairment, etc.; Fried &Nesse 2015). Di-
agnostically minded theorists have also emphasized that there is special value in understanding
the processes that underlie hallmark (disorder-specific) symptoms, because they carve phenotypic
space at its joints (Spitzer et al. 2007). For instance, from a nosological perspective, there may be
special value in understanding flashbacks in post-traumatic stress disorder (PTSD) due to their
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Figure 4

An example of meaningful heterogeneity. Various mental health problem elements, such as elements of
major depression disorder or generalized anxiety disorder, might arise in some individual (pastel-colored dots).
The specific elements that arise in a given time frame (bright-colored dots), and their relations to each other
(arrows), are determined in part by the socioenviromental context, such as a stressful life event involving
humiliation (more likely to lead to depression) or endangerment (more likely to lead to general anxiety)
(Kendler et al. 2003).

specificity to this disorder, whereas symptoms such as negative beliefs about oneself and the world
are much less specific to PTSD.

Another approach that begins with the diagnostic categories is to use common clusters of
symptoms. For instance, Brown and colleagues (2018) reported that amygdalar activity evoked
by computational-model-derived associability (i.e., increased attention proportional to prediction
error, here specifically in a loss condition) was more related to avoidance/numbing and hyper-
arousal than reexperiencing symptom clusters of PTSD.Note, however, that obtaining replicable
symptom clusters for common mental health problems has been challenging (e.g., Armour et al.
2015).

3.1.2. Bottom-up approaches. A fundamental challenge to top-down research that begins with
the DSM diagnostic system is that the signs and symptoms collected in this manual were deliber-
ately described at a superficial level rather than in terms of underlying processes. The aspiration
was to enable reliable diagnosis by clinicians of different theoretical orientations who disagreed
about the underlying processes (Wakefield 1992a). However, a critical aim for psychopathology
science, including computational psychiatry, is tomove beyond such superficial descriptions.Com-
putational cognitive neuroscience offers powerful tools for fractionating into primitive units pro-
cesses that were previously subsumed under an aggregating construct. Computational psychiatry
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seeks to fractionate the processes specifically relevant to mental health (Maia & Frank 2011);
that is, it takes a bottom-up approach that begins with well-defined processes and relates these
to mental health phenomena. Underscoring the importance of this endeavor, many symptoms
within the current diagnostic manuals (and constructs in the wider psychopathology vernacular)
are turning out to be “suitcase terms”—terms that obscure precise distinctions (Minsky 2007).
For example, anhedonia, a cardinal symptom of MDD that is also present (or similar to symptoms
described) in numerous other mental health problems (McCabe 2018), involves distinct compo-
nents, only some of which are altered in MDD (Huys et al. 2013, Keren et al. 2018, Treadway
& Zald 2011). Similarly, impulsivity can arise from a variety of mechanisms, including valuation
asymmetries related to striatal DA (Frank 2005), alterations in decision-threshold activity during
conflict via PFC-STN interactions (Frank et al. 2007), and differences in how future rewards are
discounted (McClure et al. 2004). Once such decompositions are confirmed, they should influ-
ence our strategies with top-down phenotypes; for instance, the discovery that individuals with
attention-deficit/hyperactivity disorder could be distinguished by type of impulsivity can help to
stratify pharmacological approaches. Ultimately, we will likely need dynamic, quantitative, and
aggregative methods to iteratively refine our diagnostic systems, especially if the pace of discov-
ery of strongly supportedmental health–relevant decompositions quickens. Emerging data-driven
neurocomputational ontologies offer inspiration (Poldrack & Yarkoni 2016).

3.1.3. Intermediate approaches. An intermediate strategy is to begin with questionnaires re-
lated to diagnostic categories (i.e., problems or symptoms commonly seen in patients with a spe-
cific disorder) but then use dimension reduction techniques such as factor analysis to derive data
summaries that cut across diagnostic symptoms, which can then be related to neurocomputational
processes (e.g., Gillan & Daw 2017, Gillan & Seow 2020, Gillan et al. 2017). Studies using this
approach have reported specificity in neurocomputational processes associated with distinct re-
gions of phenotypic space (e.g., Gillan et al. 2016, Rouault et al. 2018). For instance, Rouault and
colleagues (2018) found, using computational modeling applied to a perceptual decision-making
task, that individuals who endorsed more compulsive behavior and intrusive thoughts (based on a
data-driven summary factor with transdiagnostic symptoms including schizotypal symptomatol-
ogy) were more confident in their choices, yet poorer in their ability to discern which choices were
actually correct; by contrast, individuals endorsing more depression and anxiety symptoms (based
on another factor including apathy symptoms) showed the opposite pattern: less confidence but
relatively higher discernment of which choices were correct (Rouault et al. 2018). Parallel to these
developments in computational psychiatry, efforts are underway in clinical sciencemore broadly to
delineate relations among symptoms and disorders transdiagnostically, such as the HiTOP (Kotov
et al. 2017).

This intermediate approach is not without challenges. For one, dimensional summaries depend
(of course) on the questionnaires they are summarizing. To establish factor structure replicability,
computational psychiatrists have tended to use questionnaires similar to the ones employed in an
original set of studies by Gillan and colleagues (reviewed in Gillan & Seow 2020), yet these may
not encompass all processes of interest (seeWatts et al. 2020 for an interesting perspective on this
issue).Gillan& Seow (2020) noted therefore that dimensions from prior studies (and the question-
naires from which they are constructed) must be iteratively refined to enable continued progress.
Other challenges relate to interpretational andmeasurement challenges that arise whenever symp-
tom questionnaires are used. Symptoms can covary for a number of reasons, and the methods that
find dimensions based on symptom covariation often provide little insight into the data-generating
mechanisms behind the covariation (Bringmann&Eronen 2018). For instance, symptoms can cor-
relate due to a common cause (e.g., sweats and aches arising from a fever) or because one symptom
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causes another (e.g., worry causing insomnia; Borsboom 2008, Kendler et al. 2011). They can also
covary for more artificial reasons, such as semantic overlap among items (e.g., feeling sad, feeling
blue, and feeling depressed in a prominent depression scale; Fried&Cramer 2017), response styles
that have nothing to do with questionnaire content (e.g., tending to answer “strongly agree”), and
implicit theories (e.g., guessing that one is answering a questionnaire about depression; Podsakoff
et al. 2012). Identifying and extracting components, factors, or dimensions from such instruments
thus does not by itself establish reliable or valid intermediary phenotypes between symptoms and
disorders (see Leising et al. 2020 for an accessible overview of some of these issues).

In sum, bottom-up, top-down, and intermediate strategies have a natural synergy; each ap-
proach has limitations, but they also have complementary strengths and weaknesses. It is also
worth noting that algorithmic computational models in computational psychiatry play a special
bridging role in that they can connect clinical phenomena and observations to biologically re-
alistic models. Yet, algorithmic models too have limitations and require substantial caution (see
Supplemental Text). A more fundamental challenge than any of these particular limitations is
that only so much progress can be made by refining static and decontextualized phenotypes, due
to the challenge of meaningful heterogeneity (Figure 4). The next sections review emerging de-
velopments for incorporating time and context in order to tame this heterogeneity, and thereby
expand the dimensionality of our models to a space within which even low-essentiality problems
reside.

3.2. Capturing Domain-Specific and Time-Varying Phenomena
in the Real World

Wehave argued that rather than arising from a core neurobiologicalmechanism, lower-essentiality
problems comprise dynamically changing neurocomputational processes interacting with situa-
tions and social milieus encountered over time.This calls for an expansion of the focus of computa-
tional psychiatry away from looking exclusively for trait-like dysfunctions and toward understand-
ing time-varying alterations in context (see also Radulescu & Niv 2019, Scholl & Klein-Flugge
2018).

3.2.1. Modeling state variation. Many mental health problems are far from static; they follow
stages or exhibit oscillations and change and transact in important ways with social and envi-
ronmental contexts. Addiction, for example, has been described as following distinct stages, and
neurocomputational processes may vary dynamically by stage, while possibly retaining an invari-
ant multidimensional structure (Gueguen et al. 2021). A neurocomputational account of bipolar
disorder produces oscillations whereby mood and reward appraisal interact in a positive feedback
loop (Eldar & Niv 2015, Mason et al. 2017). MDD (and possibly many other internalizing disor-
ders) is both precipitated by life stress and associated with stress-generating behavior (Hammen
2005), possibly due to a complex interplay between dynamically changing propensities and stress-
ful experiences (Hitchcock et al. 2021, Snyder & Hankin 2016).

Time-varying phenomena present a challenge to task assays performed at one cross-section
in time, as these are predicated on the assumption that the processes under study are stable (i.e.,
trait-like; Rodebaugh et al. 2016). However, if time-varying phenomena can be harnessed, they
present opportunities, in that phenomena that signal transition points in mental health could be
detected for prediction and intervened upon for prevention. Exemplifying this possibility, Konova
and colleagues (2020) administered a task, which distinguished comfort with known risk (via mon-
etary gambles where the probabilities were known) from unknown risks (via monetary gambles
where probabilities were partially occluded), up to 15 times over a period of 7 months to individu-
als receiving community treatment for opioid use.Using computational modeling, the researchers
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estimated individual propensities to take known and unknown risks and submitted these as one-
time-back predictors in logistic regression models predicting opioid use. They found that toler-
ance for unknown (i.e., ambiguous) risks alone significantly predicted subsequent use. This result
was especially compelling because data were collected from a parallel cohort of healthy controls,
among whom the model-derived predictors were relatively stable over time; by contrast, the pre-
dictors’ stability was lower among the individuals struggling with opioid use, likely due in part to
meaningful variation that facilitated prediction (Konova et al. 2020).

3.2.2. Incorporating domain-specific stimuli or contexts. Another method for understand-
ing neurocomputational differences in context is to use domain-specific stimuli or contexts rather
than generic (e.g., fractal) stimuli. Frey and colleagues found that individuals with elevated depres-
sion symptoms showed slower incremental learning in two social tasks: one that involved picking
items for a party and then seeing how each item was judged by other (putative) participants (Frey
et al. 2021), and another that involved gradually learning how happy or fearful different people
tended to be by repeatedly guessing each person’s emotion and then seeing them make a neutral
or happy/fearful face (Frey & McCabe 2020b). Those who were slower to learn in the first study
also reported spending more time quarreling or engaging in other unpleasant social activities in
their everyday lives (Frey et al. 2021). Another interesting finding by this research group was that,
in the face-learning task, nondepressed participants who underwent serotonin depletion showed
similar patterns of sluggish learning and altered neural activity as the depressed participants (Frey
& McCabe 2020a).

One limitation of these studies is that they did not directly compare social and nonsocial
contexts, making it difficult to determine whether participants were characterized by a generic
decision-making alteration or one specific to social settings (see Pulcu & Browning 2017). Ad-
dressing this issue, Lamba and colleagues (2020) investigated behavior in a game where partic-
ipants received an initial monetary endowment and invested portions of it on a trial-wise basis
with (they were told) a human partner or slot machine, which would subsequently return vary-
ing amounts; they were told the human participant would receive quadruple the invested amount
before apportioning the return. In reality, the amount that the human partner/machine returned
was rigged and drifted slowly over time, mimicking real-world situations in which fortunes or at-
titudes change gradually (such as a job interview that takes a slow but steady turn for the worse).
Participants across a spectrum of generalized anxiety symptoms struggled to stop investing in
slot machines that began shorting them on returns; however, lower-anxiety participants rapidly
adjusted when their human partners did the same, possibly reflecting a swift ability to detect ex-
ploitation in this social context. By contrast, higher-anxiety participants were similarly slow to
adjust investments to human partners who became more miserly as they were to adjust to slot
machines. The use of matched social and nonsocial contexts allowed the researchers to conclude
that the difficulty in responding to gradual uncertainty among anxious participants was (mostly)
specific to the social domain (Lamba et al. 2020).

3.2.3. Connecting lab-based observations to real-life behavior. Complementary to research
that brings idiosyncratic and ecologically valid stimuli into the lab is work that relates lab-observed
differences to behavioral variation in everyday life. Eldar and colleagues (2018) reported a tour-de-
force example of how to connect modeling, real-world behavior, and multimodal measurement.
In their study, ten individuals completed a reinforcement-learning task twice per day on their
smartphones while portable systems recorded electroencephalography and heart-rate data. Com-
putational modeling revealed individual differences related to dissociable fast and slow learning
processes: Participants with stronger neural decodability of the fast-learning process (according
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to machine-learning methods) showed an improvement in their mood a few hours later, whereas
those with stronger decodability of the slow-learning process showed higher mood the following
day (Eldar et al. 2018).

In general, smartphones offer an unprecedented opportunity for so-called digital phenotyping,
including high-frequency or even ubiquitous collection of certain types of mental health–relevant
data with minimal participant burden (see Gillan & Rutledge 2021 for an authoritative review).

3.2.4. Understanding alterations in context. A theme of this section has been the impor-
tance of understanding empirically observed neurocomputational alterations in context, rather
than merely documenting that an alteration exists. One area of computational psychiatry in which
a shift has been evident in how to interpret observed differences is the investigation of model-
free versus model-based strategies in reinforcement learning. Briefly, model-free reinforcement-
learning algorithms are those that solve trial-and-error learning tasks without an explicit rep-
resentation of the world, whereas model-based strategies represent aspects of the world such as
reward distributions and transition probabilities. An impactful set of studies used the so-called
two-step task (Daw et al. 2011) to infer participants’ model-free and model-based propensities.
Early studies suggested that a tendency to employ model-based control emerges over develop-
ment (Decker et al. 2016) and implicated decreased model-based control in obsessive-compulsive
disorder (Gillan et al. 2015) and compulsive decision making broadly (Gillan et al. 2016). This
seemed to imply that a trait-like and domain-general propensity toward model-free over model-
based control contributes to faulty decision making and psychiatric disorders. This may be cor-
rect to an extent, but recent work has also shifted the focus toward understanding how different
contexts and goals influence the type of strategy used.1 This includes theoretical accounts that im-
plicate incorrect model-based reasoning in depression (Huys et al. 2015) and suggest a spectrum
of model-free to model-based reasoning depending on the speed under which a decision must
be made (e.g., Keramati & Smittenaar 2016). A study involving the two-step task showed that
people increased model-based control when incentivized to do so, cutting against the notion of a
fixed capacity; surprisingly, the researchers also found that individuals high on sensation seeking
and on an anxious-depressed dimension were especially responsive to incentives to use model-
based control (Patzelt et al. 2019). In a reinforcement-learning task with a social framing,
Hunter and colleagues (2019) found that individuals with elevated social anxiety symptoms
showed increased model-based control specifically in response to “upward-counterfactual” feed-
back (Hunter et al. 2019). Finally, building on behavioral neuroscience research, Mobbs and col-
leagues (2020) argued that the same animal will tend to employ a spectrum of strategies depending
on its proximity to threat: from hardwired responses when threat is extremely close to multi-step,
model-based reasoning when threat is very far. Overall, this recent work reflects a shift in empha-
sis toward the differential use of model-free versus model-based strategies based on demand and
context.

3.3. Measuring Dynamics and Person-Specific Processes and Developing
Formal Mental Health Systems

This section reviews methods for modeling temporal and within-person dynamics, which we have
argued are especially important in medium- and lower-essentiality problems (see also Gillan &
Rutledge 2021, Huys et al. 2021, Scholl & Klein-Flugge 2018).

1Note that in their earliest work Daw and colleagues (2005) already emphasized that context should norma-
tively influence the strategy used.
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3.3.1. Modeling dynamics. Recent frameworks that conceptualize mental disorders as com-
plex systems of interacting processes have developed novel network methods to model dynamic
changes to mental health over time (Beltz & Gates 2017, Borsboom 2008, Bringmann et al. 2013,
Fried & Cramer 2017, McNally 2021, van de Leemput et al. 2014). These network models are
statistical representations of node-and-edge relationships between mental health elements (most
commonly symptoms, although other variables are increasingly incorporated; Fried & Cramer
2017). These elements are often assessed by self-report; hence, they are subject to similar limita-
tions as those mentioned above in the context of intermediate approaches. This includes that the
methods typically provide only weak information about the structure of mental health problems
(Bringmann & Eronen 2018).

Notwithstanding these modeling limitations, the network approach has drawn important at-
tention to the ontology of mental health (McNally 2021). Additionally, recent network modeling
developments may provide more information about the structure of mental health problems and
potentially point to novel intervention targets.These include recentmethods that leverage control
theory to attempt to infer the most controllable node within a network, which could be a fruitful
target for psychotherapy (Henry et al. 2020). Predictability methods estimate how well each node
in a network can be predicted by all other nodes in terms of variance explained, potentially re-
vealing how important a node (e.g., sleep difficulties) is within a broader system (e.g., depression).
Moreover, the average predictability of all nodes in a network can (under some critical assump-
tions) provide insight into how well (or poorly) the included elements reflect the full system. For
instance, a review of 18 network studies found that depression, PTSD, and anxiety had higher
average predictability than psychosis, suggesting that some elements (possibly including a neuro-
computational common cause) were not represented in the psychosis network (Haslbeck & Fried
2017). Methods from complex-system analysis could also aid our understanding of the structure
and dynamics of various problems. These methods build on the properties of complex systems,
such as their leaving signatures like autocorrelation and increasing variance near transition points,
regardless of their specific constitutive elements. An influential paper argued that rising autocor-
relation and variance among emotions signals a “critical slowing down” that augurs a depressed
state, similar to critical transitions observed in fields such as ecology (van de Leemput et al. 2014).

In computational psychiatry, there is a rich tradition of modeling neural dynamics (recently
reviewed in Durstewitz et al. 2020), yet there has been much less focus on the externally observ-
able dynamic elements of mental health systems. A notable exception are the models developed
by Eldar and colleagues that produce oscillatory dynamics (Eldar & Niv 2015,Mason et al. 2017).
These frameworks model individual differences relevant to bipolar disorder via an interdepen-
dence between mood and evaluation. In this approach, a mood-biasing parameter (assumed to be
trait-like) can produce dynamics such that perceived rewards sometimes far exceed expectations,
leading to large positive surprises that sendmood rocketing upward, and sometimes fall far short of
expectations, leading in turn to crushing disappointments after reward omission that drive mood
downward. Remarkably, the administration of a selective serotonin reuptake inhibitor (SSRI) ap-
peared to modulate this parameter, leading rewards to be more impactful when in a good mood,
and in turn further increasing mood. This might lead to a slow but steady increase in the propor-
tion of felicitous experiences, eventually leading to greater well-being over time.Thus, this finding
may help to explain the gradual effects of SSRIs as well as the increased susceptibility to mood
instability that these drugs appear to induce among a subset of individuals (Michely et al. 2020).
Computational psychiatry theories that predict these kinds of temporally extended dynamics offer
a glimpse into how risky predictions concerning how elements of mental health systems interre-
late can be derived and then tested on data collected in the real world—leading to an iterative
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Figure 5

Theories from recent computational accounts that predict temporal and contextual dynamics in the real
world. The figure illustrates theorized interrelations between mental health elements in two recent
computational psychiatry accounts. These predict real-world dynamics; hence, data could be collected over
time and analyzed (e.g., via network-model representations) in order to test and iteratively refine the
theories. The arrows show the theorized direction, and the arrow width the hypothetical strength, of
relations for different individuals. This reflects that specific elements of the relationships between the
elements may vary among people; e.g., one person may show an especially strong or weak effect of reward
prediction error on mood. (a) Based on empirical literature on mood and reinforcement learning and
computational modeling, Eldar and colleagues recently proposed a positive feedback loop between mood,
appraisal of outcomes, and reward prediction error (Eldar & Niv 2015, Mason et al. 2017). (b) Based on
empirical literature on rumination and stress-dependent behavior, Hitchcock et al. (2021) recently suggested
that rumination comprises the recollection and reconsolidation of negative self-referential memories (and
other cognitive processes, not depicted). And when rumination takes place at the same time as a potentially
important external learning experience, it impairs reinforcement learning about the contingencies. This
concurrent process may at once increase the future likelihood of recalling negative memory and engaging in
stress-dependent behavior (given that avoiding the latter requires learning adaptive responses to
contingencies).

refinement of model and theory (Figure 5). For instance, this model predicts trait-like individual
differences as well as drug effects on mental health elements—expectations, subsequent gloomy
and glorifying appraisals of surprising experiences, and domino effects on mood. These could be
tested by applying network models (such as moderated network models; Haslbeck et al. 2019) to
data reported by participants over time, in order to capture varying drug effects or between-subject
trajectories related to the mood-biasing parameter.

3.3.2. Capturing person-specific processes. Due to the divergent trajectories of lower-
essentiality problems (i.e., multifinality), measuring,modeling, and understanding person-specific
patterns are especially important. One striking example of how person-specific patterns can
dissociate from group-level patterns is Simpson’s paradox—the fact that, for example, coffee
consumption may perfectly positively correlate with neuroticism between subjects, even if the
relationship is negative within subjects (i.e., these individuals become less neurotic when they
consume coffee; Kievit et al. 2013). Such a possibility should trouble computational psychiatrists,
because a tacit assumption in much task-based research is that finding an altered pattern between
mentally unhealthy and healthy individuals (or groups) is the first step toward developing a
remedial within-subject intervention. Notably, the fact that extrapolating from between-person
to within-person patterns—or more generally from groups to subgroups, groups to individuals, or
averages across time to temporal patterns (Kievit et al. 2013)—can lead to misleading conclusions
appears to be of more than theoretical concern, with a recent computational psychiatry study
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providing an interesting example. As mentioned above, a longitudinal investigation by Konova
and colleagues (2020) found that opioid use could be predicted by a one-time-back measure of
tolerance for ambiguous risk. On average between groups, however, a quite different pattern
emerged: Tolerance of known risk, which was not a significant predictor of subsequent opioid
use, was the only different marker among the recovering and healthy control groups (see also
Gueguen et al. 2021 for discussion of this result).

Hierarchical modeling (including frequentist mixed-effects models and hierarchical Bayesian
models; see Supplemental Figure 1) offers a statistically principled approach to modeling
between- and within-subject effects, and it enjoys widespread use in computational neuroscience
and psychiatry. Multilevel vector auto-regressive (VAR) models enable the estimation of some
specific temporal effects, permitting examination, for example, of how various emotions predict
themselves and other emotions over time (Lydon-Staley et al. 2021). This allowed researchers to
corroborate clinical insights such as the idea that, among neurotic individuals, worry strengthens
the duration and transition between negative emotions (Bringmann et al. 2013). To date, such
models have largely relied on self-reports, but an exciting future avenue is to use multimodal
methods, including neurocomputational markers derived from computational psychiatry meth-
ods, to estimate the elements in such networks with higher precision. This is especially important
to overcome the problems inherent to the investigation of suitcase constructs, such as worry, that
may encompass somany primitive processes that their relationships to other items are confounded
(Eronen 2020a).

Despite their advantages, hierarchical methods alone are of course unable to resolve the limita-
tions inherent in attempting to extrapolate from between-subjects data to within-subject patterns.
Moreover, from the perspective of informing person-specific interventions, hierarchical methods
can distort individual patterns that may be important (due to their imposition of distributions that
can alter patterns from the raw data, especially outlying points). In particular, hierarchical methods
may sometimes mask patterns operative within individuals over time that could be important—to
psychotherapy conceptualizations, for example. Drawing on a rich tradition of single-case designs
(Barlow & Hersen 1973), psychotherapy-minded research is seeing an efflorescence of methods
aimed at capturing and capitalizing on within-subject patterns (Wright & Woods 2020). Poten-
tially offering the best of both worlds, methods such as the GIMME algorithm seek to capture
time-series patterns reliably present within a group and at the same time extract idiographic pat-
terns (Beltz & Gates 2017).

An exciting avenue for future research is to connect these person-specific approaches that offer
rigorous methods for functional conceptualizations of mental health with computational psychi-
atry accounts. What the latter have to offer are new clinical principles for the next generation of
psychotherapies built upon basic (e.g., computer and decision) sciences (Moutoussis et al. 2018,
Niv et al. 2021). It is worth noting that there are natural complementarities among the functional-
analytic tradition in behavior therapy, which seeks to understand why behavior occurs in a context
with an eye toward modifying it (Burger et al. 2020, Hofmann & Hayes 2019); the network ap-
proach, which views mental health problems as causally related elements interacting over time
(McNally 2021); and the bounded (computational) rationality perspective in the decision and
computer sciences, which seeks to model decision making under limited resources, and which
can explain how what might appear to be dysfunctional responding is actually rational in light of
context and constraints (Gershman et al. 2015, Russek et al. 2020, Simon 1990).

3.3.3. Formalizing mental health systems. A landmark development toward modeling time
and context is the recent development by Robinaugh and colleagues (2019) of a large-scale men-
tal health system (in this case, panic disorder). This system implements the network approach
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vision of interacting mental health elements within a detailed computational model that can sim-
ulate mental health dynamics. Notably, this system was recently extended to model the effect of
functional-analytic interventions for panic disorder (Burger et al. 2020), thereby demonstrating a
parallel functionality to the ability of biologically detailed computational neuroscience models to
simulate the dynamics of specific interventions, such as an increase in tonic dopamine. Robinaugh
et al.’s (2019) model has not yet incorporated rich biological detail, nor has it been paired with al-
gorithmic approaches to concisely summarize key model behaviors that can be applied to describe
individual differences between people; these are exciting avenues for future research. Integrating
this type of approach with powerful techniques from the mainstream of computational psychi-
atry may eventually enable time and context to be rigorously incorporated into computational
psychiatry, providing insights and targeted intervention opportunities even for low-essentiality
problems.

SUMMARY POINTS

1. We predict that progress in the next generation of computational psychiatry will come
from modeling time and context in order to tame the complexity of mental health dis-
orders of lower essentiality.

2. Three heuristics can help to estimate essentiality: Is there a single, core neurobiological
mechanism at the problem’s root? Does the problem follow a straightforward natural
course? Is intentional mental content (such as beliefs) distinct from the problem itself?

3. If the answer to all of these questions is yes, the problem has high essentiality. By con-
trast, lower-essentiality problems comprise multiple interrelated elements (not all nec-
essarily dysfunctional) and vary greatly over time. Intentional content is important in
these problems.

4. Clinical principles concerning beliefs, values, personal significance, humiliation, and
other types of intentional content could be grounded in computational theories. In ad-
dition, the type of intentional content endemic to a problem can help us contextual-
ize observed differences. For instance, do individuals with this problem invariably show
differences in trial-and-error learning, or are the differences limited to specific social
contexts? What does this tell us about the problem itself?

5. Mental health problems may spuriously appear to have low essentiality because of im-
precise phenotyping. Computational psychiatry has much to contribute to the impor-
tant project of refining phenotypes. Yet, standard approaches to deriving more precise
phenotypes at a single point in time may be insufficient for lower-essentiality problems
because of their temporal and contextual dependence (i.e., their meaningful heterogene-
ity). Modeling variation over time and in context is critical. Even when this is done, the
complexity of these problems implies that it might take more time to make progress on
them compared to simpler problems.

6. Algorithmic modeling has a special role in bridging levels and dimensions of analysis in
computational psychiatry, although there are many technical and inferential challenges.
Caution is required. Recent innovations may dramatically advance the scope and power
of these models (see Supplemental Figure 1).
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7. Computational psychiatry theories are beginning to make risky predictions about dy-
namics in the real world. Modeling and measurement techniques from adjacent areas—
including network and complex-systems approaches and digital phenotyping—will be
important to the next generation of computational psychiatry, especially for capturing
and modeling the real-world dynamics of lower-essentiality problems and thereby en-
abling iterative refinement of increasingly sharp predictions.

8. The importance of context in lower-essentiality problems resonates with the perspec-
tives of three traditions that developed largely independently: the functional-analytic
tradition in behavior therapy, the bounded (computational) rationality tradition in the
decision sciences, and the network approach to mental health.These shared perspectives
raise the prospect of uniting computational and psychotherapy principles.
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